
Elektrotehniški vestnik 69(5): 259–265, 2002
Electrotechnical Review, Ljubljana, Slovenija

Analog Subscriber Call Generator

Boštjan Vlaovič, Zmago Brezočnik
University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova ulica 17, 2000 Maribor, Slovenia
e-mail: fbostjan.vlaovic, brezocnikg@uni-mb.si

Abstract. The paper describes the development of the analog subscriber Call Generator (CG) for the SI2000 V5
switch node. It provides developers with the test environment without the use of external testing units. The
proposed architecture assures effective tests of program layers above the driver of analog subscriber circuits. This
was accomplished with minimal changes of the existing program code and application of the existing
communication procedures. Compared to external testing units, the software Call Generator possesses some
limitations. Because of the software nature of its operation, electrical interfaces on analog subscriber line circuits
are not tested for proper operation. Also, usual audio checks of the connection are not performed. The call
generator can be extended with this functionality, but this would demand greater changes of the existing program
code and an additional use of digital signal processing resources. This would impose unnatural performance of the
switch node under test. Testing without using external testing units represents the main achievement for the
developer. For the CG operation, only an IP connection between the developer’s workstation and the tested switch
node is required. Developers can control and monitor the execution of tests from their development workstation
with any WWW (World Wide Web) browser.

Key words: telecommunications, testing, SDL, call generator, switch node

Generator klicev analognega naročnika

Povzetek. Prispevek predstavlja razvoj programske opreme
za telefonsko centralo SI2000 V5. Opisuje programski gen-
erator klicev analognega naročnika. Generator omogoča te-
stiranje programske opreme brez uporabe zunanjih testirnih
naprav. S primerno zasnovo smo zagotovili učinkovito testir-
anje programske opreme, ki se nahaja nad gonilnikom vezij
analognih naročnikov. To smo dosegli z minimalnimi spre-
membami obstoječe programske opreme in ponovno uporabo
obstoječih mehanizmov komunikacije med sloji programske
opreme. V primerjavi z zunanjimi testirnimi napravami ima
generator določene pomanjkljivosti. Zaradi programske zas-
nove se v času izvajanja testov ne preverjajo električni vmes-
niki na vtičnih ploščah analognih naročnikov. Dodatno se ne
preverja t.i. slišnost povezave, ki ugotavlja pravilno povezavo
dveh naročnikov. Z razširitvami bi se ta pomanjkljivost lahko
odpravila, vendar dodatni programski posegi in zaseganje virov
zmanjšujejo smiselnost takšne razširitve. Bistvena pridobitev s
stališča razvijalca izvira iz samostojnega delovanja, ki ne pre-
dvideva uporabe zunanjih testirnih naprav. Poseben poudarek
pri razvoju je imela prostorska neodvisnost uporabnika. Za
normalno delovanje zadostuje povezljivost delovne postaje in
testne centrale po protokolu IP. Za nadzor generatorja in prikaz
rezultatov zadostuje katerikoli spletni brskalnik na razvijalčevi
delovni postaji.

Ključne besede: telekomunikacije, testiranje, SDL, generator
klicev, telefonska centrala

Received 29 July 2002
Accepted 13 November 2002

1 Introduction

The telecommunication market is changing rapidly. The
manufacturers and carriers need to adapt quicker than
ever. The software development cycle is getting shorter
and shorter. Only a proper development methodology can
ensure quality of the product. Specification languages,
theorem provers, and model checkers are beginning to be
used in industry. Testing of products takes a considerable
part of the development process. Tests provide a syste-
matic evaluation of the product’s functionality against its
specification through its development process. Reviews
of the program code and tests should be performed at each
development process phase.

In this paper a new method for testing the SI2000 V5
switch node is introduced. It cannot fully replace other
testing methods, but provides a cheap, quick, and prac-
tical test environment for the developer.

The architecture of the mentioned digital switch node
is presented in Section 2. A basic description of the
switch node and its analog subscriber configuration is
given. Next, a general description of the Specification
and Description Language (SDL) is provided in Section
3. It is used for the specification and description of struc-
tural and behavioral aspects of the system. In Section 4,
SDL architecture of the SI2000 V5 digital switch node is



2 Vlaovič, Brezočnik

presented. The design, development, and operation of the
Call Generator are described in Section 5. In Section 6,
we comment on the results and give directions for further
work.

2 SI2000 V5 digital switch node

IskraTEL is the largest Slovenian telecommunications
company for development, marketing, planning, manu-
facturing, installing, and servicing of telecommunication
systems. It was established in 1989 with the capital
of Slovene investors and the German company Siemens.
The current generation of its digital switch node is called
SI2000 V5. Its capacity spans from a few hundred to se-
veral thousand ports. It is an advanced modular system
that offers basic functionality as well as a wide range of
services including PSTN, ISDN, SS7, H.323, Centrex, IP
Centrex, etc.

SI2000 V5 has different modules. The paper focuses
only on MLC (Line Module Version C). The task of MLC
is to connect analog subscribers, ISDN terminals, H.323
terminals, and network transmission paths. It can perform
functions of an access node, PBX system, or small local
exchange. The MLC’s functionality is defined by its hard-
ware configuration and loaded software. Sub-rack confi-
guration of MLC incorporates a main control unit, power
supply unit, and peripheral units (ISDN and analog sub-
scribers). The system connects to the IP network via Eth-
ernet adapter.

Peripheral units are inserted in the MLC sub-rack. The
MLC module can hold 22 peripheral plug-in units. They
are connected in a form of a star, thus minimizing the
mutual influence among plug-in units and allowing plug-
in unit replacement under voltage.

The SAC (Analog Subscriber Unit) plug-in unit serves
for a two-wire (a/b) connection of analog terminals.
There are 32 analog subscriber line circuits on the plug-in
unit, thus providing MLC module with a maximum of 704
analog subscribers. Usually a duplication of the main unit
and power supply unit is used, so the maximum number
of analog subscribers drops to 640.

The core of the modern switch node is its software.
It provides functionality, control, and management of the
system. Most of the software is implemented with SDL.
Various drivers for the peripheral devices and smaller
parts of the protocol stacks are implemented with C and
C++ programming languages.

3 Specification and Description Language

SDL was developed by the switching systems industry
and was first standardized by CCITT (Comité Consultatif
International de Télégraphique et Téléphonique) in 1976
[1]. It is based on finite state machines, but it uses graph-
ical representation of flowcharts to show allowed trans-

itions. In the development cycle, SDL is employed for the
formal specification and design of the system. SDL sup-
ports specification and description of structural and beha-
vioral aspects of the application under development. It
is a formal description technique (FDT). Its dynamic se-
mantic is formally defined with a combination of Meta-IV
and CSP (Communicating Sequential Processes) [2].

SDL may serve a number of purposes, from reasoning
about systems at an abstract level to the automatic deriva-
tion of implementations. Nowadays, several commercial
and academic tools are available that support the deve-
lopment of systems with SDL. Tool support comprises
graphical editing, validation, verification, simulation, ani-
mation, code generation, and testing. We use Telelogic’s
Geode and ObjectGeode.

At the highest level of the SDL hierarchical specific-
ation is an object called system. The system is an entry
point to the SDL specification. It comprises a set of blocks
and channels. Blocks are connected with each other and
with the environment by channels. The hierarchy in SDL
is a static structuring concept. Block is described by sub-
blocks or set of processes. Blocks are static entities —
they are created during the initialization of the system.
Communication between blocks is only possible along the
defined channels. Channels are asynchronous and can be
unidirectional or bidirectional. Blocks are finally refined
into processes.

A process is defined by a process graph. Each branch
of the graph represents a possible execution of the pro-
cess. Processes describe the system behaviour. Commu-
nication between different processes, and between pro-
cesses and the block interface is done via signal routes.
Signal routes are non-delaying. Signals are the primary
communication mechanism in SDL. Each process has an
unbounded queue at the input port. The port allows re-
ceived signals to be queued until they are consumed or
discarded by the process instance.

Process instances can be created either during the ini-
tialization of the system or dynamically during the exe-
cution of the system. Within the process declaration a
dynamic range of the allowed number of instances can be
set. Each process instance in an SDL system represents
an independent asynchronously executing CEFSM (Com-
municating Extended Finite State Machine). A process
instance may be executed as soon as one of its trigger
conditions holds. Transitions of a single process instance
are executed sequentially. Interleaving of different actions
concurrently executed by different processes are elimin-
ated in SI2000 V5 system by implementation of atomic
transitions.

4 SI2000 V5 Software Architecture

The SI2000 V5 system software consists of operation and
maintenance functions, control functions, and connection



Analog Subscriber Call Generator 3

ASIO

UO

TT

CASASTM

SIG

TTM

CVA

CDA

DRV

sub_A sub_B

CAS_OUTPUT

Omux

SIG

ASTMcgi CASmux

TTmux

ASTMux

scandrv

signals from upper layers

signals from lower layers

TT control and data signals

to/from upper layers

Figure 1. SDL architecture of Call Generator and its environment

functions [3, 4]. Operation and maintenance functions
include real time operating system pSOS (plug-in Sil-
icon Operating System), database support and diagnostic
functions. Control functions are the core of the switch
node. These functions are required to control services
and connections, e.g. signalling, routing, and connec-
tion/resources handling functions. Connection functions
are directly related to the connection path through the ex-
change, i.e. switching and transmission mechanism.

Figures 1 and 2 show the architecture of the SI2000
V5 SDL code. It consists of two main blocks. CDA
(Communications Controller Version A) block includes
drivers for peripheral units, scanner for events on analog
subscriber lines, DSP (Digital Signal Processing) driver,
diagnostic and test program blocks, and initialization pro-
cedures. CVA (Central VME Processor Unit Version A)
block includes signalling protocols, signalling control,
connection control, call control, services, tariff informa-
tion, and management. We will focus only on parts relev-
ant to the analog subscriber that uses pulse dialling. The
SI2000 V5 signalling control layer unifies pulse and tone
dialling for the call control layers.

SI2000_V5

CVA

SIG

CAS

SIGC

ASTM

CDA

SIG TTM DRV

CAS_OUTPUT

Figure 2. SI2000 V5 SDL program architecture

The program code is executed in real time. That
means it responds to the stimuli from the environment
at the predefined times. Because of the system archi-
tecture, a change on the analog subscriber line is detec-
ted in 4 ms at the latest. Changes on analog subscriber
ports are recorded in a special table transfered with the
SDL signal grouped status change (Fig. 3) from
the scandrv process to the upper layers (CASmux pro-
cess) (Fig. 1).

CASmux manages ASIO (Analog Subscriber In-
put/Output) processes and acts as a multiplexer for the
communication with the lower layers. Each analog sub-
scriber has its own ASIO process instance. CASmux
parses the received signal from scandrv and forwards
changes to the appropriate ASIO processes. Control of
analog ports is managed by the ASIO process through the
Omux, UO, and scandrv processes in the CDA block
(Fig. 1). The partial analog subscriber signal path for a
simple call from port A to port B is shown in the MSC
(Message Sequence Charts)[5] diagram in Fig. 3.

5 Analog Subscriber Call Generator

The analog Subscriber Call Generator (CG) has been de-
veloped for the basic functionality testing during the pro-
gram development [6]. Until now, developers had to use
external testing equipment if they wanted to test their code
against its specification. The main idea was to create soft-
ware processes that would follow a predefined scenario
and provide the switch nodes’ existing program code with
the same stimuli as would be received from the environ-
ment (analog subscriber port).



4 Vlaovič, Brezočnik

 T=4ms

 T=4ms

scandrv

from_upper_layers

alert_B
alerting

to_upper_layers
status_change_B

grouped_status_change
off−hook

off−hook

pulse_dialing
grouped_status_change

grouped_status_change

status_change_A
to_upper_layers

status_change_A
to_upper_layers

create_UO

Alert_B

Omux

UO(B)

BA

ASIO(A)

ASIO(B)

upper layersCASmux

conversation

Figure 3. Simplified MSC diagram of a telephone call from port A to port B

The main objective was to provide every developer
with the test environment that would require only IP con-
nection between his/her workstation and tested switch
node. SI2000 V5 switch nodes have installed a small
HTTP (Hyper Text Transfer Protocol) server. User inter-
face for the CG is provided through the WWW browser.
Remote control of CG enables testing of already installed
switch nodes in Russia, Turkey, etc. Additionally, deve-
lopers are not limited to a testing site in the company, but
can control and monitor the execution of tests from his/her
development computer with any WWW browser. We will
not deal with security questions and will assume that they
have been solved at the IP level.

5.1 Program architecture and configuration

Tests should cover as much of the existing software as
possible, so CG should introduce only small changes to
the existing program code. Generation of stimuli from
the virtual subscriber should be done as close to the usual
signal origin as possible. The natural place for the virtual
telephone functionality is within the CDA block. The core
of the CG is in the TTM (Test Telephone Module) block
(Fig. 1). It consists of two processes. Process TTmux
(Test Telephone Multiplexer) manages TT (Test Tele-
phone) processes and acts as a multiplexer for the com-
munication with upper layers (CASmux process). It col-
lects changes on ports and forwards them to the CASmux
process with the same SDL signal as the scandrv pro-
cess would. With this architecture, SDL signals reporting
changes on the virtual subscriber ports traverse the same
route as the original ones. Complete SDL architecture of
CG and its environment can be seen in Fig. 1. Changes in
the existing code have to be made only to the scandrv
process. All control signals from upper layers for the ana-
log ports are now forwarded also to the TTmux process. It
checks if the control information is destined for one of the

test telephones and forwards it to the appropriate TT pro-
cess. All logic for test scenario execution resides in the
TT process which is dynamically created upon the start of
CG.

The management part of the CG is built in the CVA
block. It consists of two processes: ASTMux (Analog
Subscriber Test Module) and ASTMcgi dummy process.
The latter includes operators that implement CGI (Com-
mon Gateway Interface) programs for interactive control
and WWW user interface for CG. The dummy process
has only one state with no actions:

PROCESS ASTMcgi(1,1);
START ;
NEXTSTATE S010_DUMMY;

STATE S010_DUMMY;
INPUT *;
NEXTSTATE -;

ENDSTATE;
ENDPROCESS ASTMcgi;

Its role is to define external operators and signals for inter-
action with the rest of the SDL program code. Operators
are implemented in the C programming language. SDL
signals are generated within the C program code. It is a
one way communication. These signals are generated on
the user’s demand through the WWW interface (Fig. 4).
The user can instruct ASTMux process to execute control
actions over virtual telephones, refresh test scenario, or
delete statistical data.

User interaction with the CG is possible, but it is not
obligatory. It can operate in an interactive mode or stand-
alone mode based on its configuration data. At the power
up of the switch node, ASTMux process checks the data-
base for CG configuration data. Separate records are used
for the configuration of the CG, test telephones, and test
scenarios. Additional records are available for the statist-
ical data about scenario executions. Based on the config-
uration data, ASTMux process instructs the TTmux pro-



Analog Subscriber Call Generator 5

Figure 4. CG control interface

cess to create the expected number of TT processes with
the prepared test scenarios. Each TT process executes its
scenario independently. Behaviour of CG depends on its
general configuration data.

5.2 General Configuration

General configuration data include the following inform-
ation: start time, stop time, restart period, instructions
for the statistical data management, and definition of the
action pause unit parameter. The first two can be
predefined for the automatic start and stop of CG at an
appropriate date and time. They can be used to execute
tests while test switch node is not occupied, i.e. during
the night. Each test telephone (TT process) is executing
its scenario independently (asynchronous operation). Re-
start period enables user to restart execution of all test
telephones from the start of their scenarios. This is some
sort of synchronisation that helps scenario inconsistency
tracking. During the execution, each change in the test
telephone state is regularly reported to the ASTMux pro-
cess. Statistical data on test execution are based on these
reports. For each test telephone several statistical data are
collected: number of successful diallings, number of suc-
cessful outgoing calls (the called party accepts the call),
number of incoming calls, number of accepted calls, and
current state (idle, dialling, ringing, talking). The cur-
rent status of each test telephone can be presented through
the WWW user interface (Fig. 5). The user can choose
to reset or keep the statistical data upon the restart of
CG. Additionally, data can be written to the database on
a regular basis. This option is especially useful if tests
crash the switch node. If the statistical data are written
to the database, they can be analysed on the reboot of
the switch node. The last option, action pause unit
parameter, defines the time unit to be used in the test scen-
ario specification. Test scenario specifications include
a natural number which represents the multiplier of the
action pause unit. It can be set in 1 ms resolu-

tion. Default value is 10 ms. With the change of the
action pause unit parameter all test scenario tim-
ings are changed.

This concludes the description of the general config-
uration data. We continue with the discussion of the indi-
vidual test telephone configuration data.

5.3 Test Telephone Configuration

The call generator assumes that no MLB will be equipped
with more than 22 peripheral plug-in units. Each ana-
log subscriber plug-in unit holds 32 analog subscriber cir-
cuits. Changes at ports are reported through STbus (Split
Transaction Bus) serial connection to the main unit. Each
STbus holds 32 channels. The analog subscriber port
is uniquely defined with the STbus number and channel
number. Each test telephone has to be assigned to the
equipped analog subscriber port for proper operation.

Test telephone processes are created by TTmux pro-
cess based on the configuration data. Beside STbus and
channel pair, some other attributes are available. To avoid
a concurrent start of all virtual telephones, which would
be unrealistic, start delay can be set for each TT process.
Other attributes define default time values for the execu-
tion of the test scenario.

Figure 5. Test telephone statistical data

Test telephone behaviour is described with a test scen-
ario. It consists of incoming and outgoing actions. Incom-
ing actions define user’s behaviour after alerting has been
received. Outgoing actions define user’s activities for out-
going calls. If there is no outgoing action, TT process
only accepts incoming calls. Defined actions are shown
in Tab. 1.

Each action is followed by a pause that can be expli-
citly defined or chosen between different random values.
Additional diversities in the test telephone operation can
be provided with the unique definitions of the random call
duration time limits, short pause unit (100 ms resolution),
long pause unit (1 s resolution), and random pause unit
limits. With proper values different subscriber behaviours
can be simulated — fast or slow typing, varying dura-
tion of conversation, unexpected call termination, etc. A
practical demonstration of the test scenario for two virtual
analog subscribers is given in the following subsection.



6 Vlaovič, Brezočnik

Code Action

0-9 numbers from 1 to 10

11 *

12 #

33 RR

20 off-hook

30 on-hook

40 GND on

50 GND off

66 End of Selection

99 End of Scenario

80 No Operation (NOP)

100 Wait for Ring

Table 1. Code for defined user actions

5.4 Practical example

For proper operation of the CG, the configuration data
have to be set according to the switch node’s hardware
configuration and test scenario specification. CG can
operate in the interactive or stand-alone mode. We will
describe interactive operation with live database update,
start, and stop of the test scenario execution. Default val-
ues assume interactive operation. The user has to change
only data that are relevant to the chosen test scenario. We
assume that the tested switch node is running and can be
reached over the IP network.

Our example will include only two virtual analog sub-
scribers. First, general CG configuration has to be set.
No changes to the general configuration database records
are necessary, unless we are not satisfied with the 10 ms
time unit (action pause unit parameter), or specific
instructions for the CG restarts and statistical data mana-
gement are defined.

Next, test telephones have to be defined. If the test
scenario does not require the use of the random time val-
ues, only STbus, port, and start delay attributes have to
be set. Their values depend on the current switch node’s
hardware configuration. Access to the database is accom-
plished with the SQL (Structured Query Language) query
and irtsql program which is part of the development
environment. Setup of the two test telephones can be
performed from the user’s workstation with the following
commands:
irtsql switch_node_IP INSERT INTO \

test_telephone VALUES (1,14,1,1)

irtsql switch_node_IP INSERT INTO \
test_telephone VALUES (2,14,11,2)}

The first value represents the TT process ID, the se-
cond holds the STbus number, the third is port number,
and the last one defines start delay in 100 ms resolution.
The second test telephone starts its test scenario execution

200 ms after the start of CG. Test scenarios are defined
with the incoming and outgoing actions which are presen-
ted in Tab. 2.

tt id No. in a in p out a out p

1 1 99 NULL 20 300

1 2 NULL NULL 2 100

1 3 NULL NULL 3 100

1 4 NULL NULL 5 100

1 5 NULL NULL 4 100

1 6 NULL NULL 66 1500

1 7 NULL NULL 30 100

1 8 NULL NULL 99 100

2 1 100 2 99 NULL

2 2 20 500 NULL NULL

2 3 30 100 NULL NULL

2 4 99 300 NULL NULL

Table 2. Test scenarios for two test telephones

Test telephone with tt id=1 (TT1) will not accept
calls since End of Scenario command is specified
as its first input action (Tabs. 1 and 2). It will start
executing the outgoing test scenario after the specified
start delay (100 ms). Off-hook command (Tab. 2) is
followed by 300 * action pause unit seconds of
pause. Next, telephone subscriber number 2354 is di-
alled (Fig. 6). Mapping between the subscriber number
and STBus/port depends on the switch node’s configur-
ation and is not part of the CG. For proper test scenario
preparation, user should be acquainted with the configur-
ation of the tested switch node. We will assume that the
subscriber number 2354 maps to STBus=14 and port=11
(TT2). Virtual subscriber waits for 1 second after each
selected number. Successful dialling is reported to the
ASTMux with the End of Selection command. TT1
terminates the call after 15 seconds.

The second test telephone (TT2) will not perform any
outgoing actions. It will only accept incoming calls.
When Wait for Ring command is issued, the input
pause parameter (in p) gets a special treatment. It rep-
resents the number of rings the TT process should wait be-
fore accepting the incoming call. In our example, the call
will be accepted after two rings with the off-hook com-
mand. TT2 terminates the call after five seconds. This
is the simplest possible scenario for non-problematic call
establishment.

Table 2 with the scenario description is written to
the database following the same procedure as described
earlier. Next, the user should refresh CG’s configura-
tion. This is accomplished through the control interface
(Fig. 4). Now, test scenario execution should be star-
ted. ASTMux process receives the start signal from the



15 s

idle

setup TT2

setup TT1(setup,actions)

100 ms

200 ms

dialing
state−change(dialing)

state−change(talking)talking

3 s

1 s

off−hook

digit 3 − 3*(on,off)

digit 2 − 2*(on,off)

ringing

ring

state−change(ringing)

ring

talking
state−change(talking)

5 s

on−hook

off−hook

on−hook

idle

idle
state−change(idle)

state−change(idle)

2 s

dialing

TTmux

TT1
TT2

ASTMux

Figure 6. MSC diagram for the test scenario

ASTMcgi process. To be exact, the SDL signal is gener-
ated within external operators of the ASTMcgi process.
ASTMux process instructs TTmux process to notify each
TT process to start executing its scenario. The test tele-
phone repeats the execution of its test scenario until it is
instructed to stop.

Each change in the test telephone state is reported to
the ASTMux process. It keeps track of all the changes
for each TT process. This data can be accessed through
the WWW interface (Fig. 5) or from the database — if
we are using this feature. CG stops the execution of the
test scenario after user’s intervention or when stop time
has been reached. Stop time has not been defined within
the presented setup, so the user should stop the execution
through the control interface (Fig. 4).

Users access switch node from their development
workstation. Different scenarios can be quickly prepared
with the help of the simple shell scripts. Access to the
database is assured with irtsql program, while the con-
trol interface and statistical data presentation are provided
through the WWW user interface.

6 Conclusion

The analog Subscriber Call Generator provides deve-
lopers with the test environment without the use of ex-
ternal testing units. The proposed architecture assures ef-
fective tests of program layers above the driver of analog

subscriber circuits. It is successfully used within the com-
pany.

Compared to external testing units, software Call Ge-
nerator possesses some limitations. Due to the software
nature of its operation, electrical interfaces on analog sub-
scriber line circuits are not tested for proper operation.
Additionally, usual audio checks of the connection are
not performed. Consequently, tests cannot guarantee that
connection between two subscribers has actually been
performed in the multi-subscriber test environment. The
call generator can be extended with this functionality, but
it would demand greater changes in the existing program
code and additional use of digital signal processing re-
sources. This would impose unnatural performance of the
switch node under test.

Further improvements are possible on the WWW user
interface. It can be extended with software agents to
present the current status and history of each test tele-
phone in a more practical and graphically attractive way.
A detailed history of the test telephone operation would
enable additional off-line analyses of the switch node per-
formance.

7 References

[1] ITU-T Recommendation Z.100, “CCITT specification
and description language (SDL)”, Series Z: Programming
Languages, ITU-T, 1993.

[2] A. Mitschele-Thiel, “Systems Engineering with SDL”,
England, WILEY, 2001, pp. 141-150.

[3] R. Slatinek, “Primerjava signalizacij v vmesnikih ISDN”,
Maribor, Faculty of EE & CS, University of Maribor,
2000, pp. 43-51.

[4] ITU-T Recommendation Q.521, “Digital exchange func-
tions”, Series Q: Digital Exchanges, ITU-T, 1993.

[5] ITU-T Recommendation Z.120, “CCITT Message Se-
quence Chart (MSC)”, Series Z: Programming Lan-
guages, ITU-T, 1993.

[6] B. Vlaovič, “Generator klicev za telefonsko centralo MLB
SI2000 V5”, diploma, Maribor, Faculty of EE & CS, Uni-
versity of Maribor, 1999.

Boštjan Vlaovič (Student Member, IEEE) received his diploma
in Electrical Engineering from the Faculty of Electrical Engin-
eering and Computer Science, University of Maribor, Slove-
nia, in 1999. He is in his third year of the Ph.D studies at the
same faculty and works as a researcher in the field of telecom-
munications. His special interests cover voice communications
over packet based networks and their integration with traditional
PSTN. His current research interests include formal protocol
verification, especially symbolic model checking.

Zmago Brezočnik (Member, IEEE) received his M.Sc. and
Ph.D. degrees from the University of Maribor, Faculty of Elec-
trical Engineering and Computer Science, in 1986 and 1992,
respectively. He is currently associate professor, head of Labor-
atory for Microcomputer Systems, and deputy dean of education
at the same faculty. His main research areas are formal hardware
and protocol verification, especially symbolic model checking,
and binary decision diagrams.


