
Automated Generation of Promela Model from SDL Specification

Boštjan Vlaovič ∗, Aleksander Vreže, Zmago Brezočnik, Tatjana Kapus
University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova ulica 17, SI-2000 Maribor,

Slovenia

NOTICE: This is the author’s version of a work that was accepted for publication in Computer Standards & Interfaces.
Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other

quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was
submitted for publication. Please cite this article as: B. Vlaovič et al., Automated generation of Promela model from SDL

specification, Computer Standards & Interfaces, 2007, iss. 4, vol. 29, pages 449-461.

Abstract

This paper presents our research in the domain of automated generation of a model from an SDL (Specification
and Description Language) system specification. We use the Spin (Simple Promela Interpreter) formal verification
tool and the Promela (Process Meta-Language) language for the description of the model. If the model is prepared
manually, we need an expert with the detailed knowledge of the system, specification language, and modelling
language. The quality of the model is directly influenced by the expert and is prone to the incorrect modelling
of the system’s properties due to the human error. Therefore, automatic generation of the model from the SDL
specification is desired. In this paper we present our approach to the automated generation of the model in Promela.
Additionally, we present challenges and future research directions.

Key words: Formal specification techniques, SDL, Promela, Automated generation of model

1. Introduction

Specification and Description Language (SDL)
is standardized in the ITU-T Recommendation
Z.100 [13]. It can be used from the abstract system
description design phase to the automatic gener-
ation of implementations. For successful formal
verification of an SDL specification a model has to

∗ Tel.: +386 2 2207217; Fax: +386 2 2207272
Email addresses: bostjan.vlaovic@uni-mb.si (Boštjan

Vlaovič), aleksander.vreze@uni-mb.si (Aleksander
Vreže), brezocnik@uni-mb.si (Zmago Brezočnik),
kapus@uni-mb.si (Tatjana Kapus).

be prepared for the chosen verification tool. If it
is prepared manually, we need an expert with the
detailed knowledge of the system, specification
language, and modelling language. The quality of
the model is directly influenced by the expert and
is prone to the incorrect modelling of the system’s
properties due to the human error. Therefore, au-
tomatic generation of the model from the SDL
specification is desired.

We decided to use verification tool Spin (Sim-
ple Promela Interpreter) with its input language
Promela (Process Meta-Language). Like SDL,
Promela adopts a strong formal basis established
in the ECFSM (Extended Communicating Finite

Preprint submitted to Elsevier Science 31st August 2007

State Machine) theory. It was designed during the
development of an experimental Supertrace tool
which focused on the exhaustive validation of a
closed SDL system [5].

Similar to SDL, Promela allows dynamic cre-
ation of concurrent processes, an arbitrary number
of message parameters, and multiple data types.
A finite automaton of the system is defined with
process templates. Given the system model in
Promela, Spin can perform random, interactive,
or guided simulation of the system executions.
Further, it can generate a verifier in C code which
performs online verification of the system’s cor-
rectness properties. To check some properties of
the system, probes have to be inserted into the
model. Probes provide an insight into the execu-
tion of the model and are mostly assertions on
special variables.

The Supertrace was the first tool that provided
a automatically generated model of an SDL speci-
fication [5]. It was introduced into AT&T’s switch
development environment as an experimental tool
and was later integrated into tool Sdlvalid [4]. Un-
fortunately, these tools are not freely available.
Another approach to the automated generation of
model is described in [2].First, the SDL specifi-
cation is transformed to an intermediate format
(IF) with the sdl2if tool. The main motivation for
the development of the intermediate representa-
tion was to provide easier interface to the various
tools for formal verification. Next, the intermedi-
ate representation is transformed to Promela with
the if2pml tool. We have studied this approach in
[10].

Detailed study of real-life industrial specifica-
tions [8,9,12] showed that this approach lacks sup-
port for some of the important SDL features. Ad-
ditionally, it requires a licence for the ObjectGeode
toolset. These findings resulted in the development
of an autonomous tool for direct automated gener-
ation of a Promela model with probes from an SDL
specification—sdl2pml. This paper is an overview
of the research results presented in [7].

The paper is organized as follows. Section 2 is
an overview of our approach to the automated gen-
eration of a model. In Section 3, a simplified SDL
specification of the V.76 protocol is given. In this
paper we present our research results with help

of this specification. Section 4 presents modelling
of SDL data. In Section 5, modelling of SDL con-
structs and communication is described. Section
6 presents formal verification of the automatically
generated model with Spin. We describe the use of
probes with system requirement specifications ex-
pressed in Linear Temporal Logic (LTL). We con-
clude with a discussion and directions for further
research.

2. Automated generation of model

Automated generation of a Promela model with
probes from an SDL system specification is not
a trivial task. There are some fundamental differ-
ences between these languages, e.g., SDL supports
hierarchical structure, whereas Promela uses flat
design. Some data types and many SDL constructs
cannot be represented trivially in Promela. There-
fore, properties that are required for proper mod-
elling of an SDL object usually include additional
information about the object’s position within the
hierarchy of the system, inherited default values,
communication infrastructure data, etc.

The most important parts of our approach can
be grouped as follows:

1. selection of relevant attributes for all SDL
data types and constructs and their formal
definition,

2. algorithm-based analysis of the specification,
3. sound modelling of predefined and user-

defined data types,
4. sound modelling of SDL constructs,
5. sound modelling of communication,
6. algorithm-based automated generation of a

Promela model with probes.
First, detailed analysis of the SDL and Promela

syntax and semantics was performed. It resulted
in many definitions that formally describe proper-
ties of the SDL data types and constructs which
have to be explicitly modelled in Promela. These
definitions are crucial for the formal specification
of algorithms for the analysis of the specification.

Next, algorithms for sound modelling of prede-
fined and user-defined data types were developed.
Our research does not include ASN.1 (Abstract

2

Syntax Notation One) which can also be used as a
data type notation in combination with SDL. This
was followed by the development of algorithms for
sound modelling of the SDL constructs.

Due to the expressive power of the SDL con-
structs for specification of communication, sound
modelling of communication presented one of the
biggest challenges. The proposed solution is based
on:
– complete analysis of communication infrastru-

cture—interconnection and hierarchy of chan-
nels and signal routes—which provides all pos-
sible routes for each signal that can be sent by
any process,

– the generation of a special process skeleton
which provides signal reception that is in accor-
dance with the ITU-T Recommendation Z.100
[13].
It includes support for direct and indirect ad-

dressing, priority signals, implicit transitions, the
save construct, enabling conditions, the asterisk in-
put and path limitations.

The algorithms for the automated generation of
a Promela model support most of the SDL con-
structs. Additionally, they include support for per-
manent, predefined, and user-defined probes.

Permanent probes are included in all models.
They are used to check model’s accordance with
the SDL semantics, e.g., detection of violations of
the maximum number of process instances.

Predefined probes are used for checking prop-
erties which would significally contribute to the
model’s complexity. They are included only on
user’s demand. For example, it can be checked if
the range conditions of the answer parts of a deci-
sion statement are mutually exclusive for all pos-
sible execution paths. Predefined probes can also
be used to check for execution paths which are in
accordance with the SDL semantics, but can result
in undesired behaviour, e.g., implicit transitions—
reception of signals that are not included in explic-
itly defined input or save constructs. An implicit
transition contains no action and leads directly
back to the same state of the process. Therefore,
this behaviour might present underspecification
that results in undesired behaviour of the system.

User-defined probes are used for observation of
selected variables or signals. Each inserted probe—

V.76

DLC1

DLC0

DLCn

disconnected

connected

UA, DISC, ...)

(SABME,

frames

V.76

DLC1

DLC0

DLCn

disconnected

connected

primitives
(L-ESTABLISH, ...)

Service
User B
(SUB)

Service
User A
(SUA)

Figure 1. Communication between SUA and SUB through
V.76 protocol

a variable or group of variables—can be used in
requirement specifications (assertions, neverclaims
or LTL formulae). They can be automatically in-
cluded with the use of comments in the SDL spec-
ification or via a configuration file of the sdl2pml
tool.

In this paper we present our research results with
help of an SDL specification of a simplified version
of the V.76 protocol. The user employs the service
of protocol V.76 [6] to establish one or more Data
Link Connections (DLCs) between two modems
and to transfer data over these connections (Fig.
1).

3. Specification of system V76test

The specification of the SDL system V76test
and associated files were published in [3] and can be
downloaded in ObjectGeode and Tau SDL formats
from the Internet 1 .

Fig. 1 shows communication between two ser-
vice users. Specification of system V76test sup-
ports two parallel connections: SUA may estab-
lish DLC number 0 (DLC0) to transmit voice and
DLC1 to transmit data to or from SUB. A request
on one side is generally followed by an indication
on the other side of the connection. Fig. 2 shows
four stages of the connection.

1 ftp://ftp.wiley.co.uk/pub/books/ldoldi/v76 ftp.zip

3

 DLCa DLCb DLCa DLCb

Exchange of identification DLC establishment

Data transfer DLC release

SABME

UA

XIDcmd

XIDresp
L_EstabResp

L_SetparmConf

L_SetparmInd

L_SetparmResp

L_EstabReq

L_EstabConf

L_EstabInd

 DLCb DLCa DLCb DLCa

L_DataReq
I

L_ReleaseReq
DISC

L_DataInd
UA

L_ReleaseInd

L_ReleaseInd

L_SetparmReq

Figure 2. Four stages of V.76 protocol connection between SUs

3.1. DLC establishment

In the first stage SUs can optionally perform
identification exchange procedures. Next, estab-
lishment of a data link connection is expected. On
receipt of an L-ESTABLISH request primitive (sig-
nal L EstabReq) from its SU, the V.76 shall at-
tempt to establish the DLC. The DLC entity trans-
mits a Set Asynchronous Balanced Mode Extended
(SABME) frame, the retransmission counter is re-
set, and timer T320 [6] is started [3]. If the peer
DLC entity, based on the response from its SU (sig-
nal L EstabResp), is able to establish the DLC, it
shall respond with Unnumbered Acknowledge (UA)
and enter the connected state. Otherwise it should
respond with Disconnect Mode (DM). Once in the
connected state, information transfer may begin.

3.2. Data transfer

The DLC receives data from SU with the use of
an L-DATA request primitive (signal L DataReq).
Data are transmitted in an I frame. Structure of
the I frame is defined by the definition of the data
type Iframe (Fig. 3).

3.3. DLC release

Communication is terminated with the L-
RELEASE request primitive (signal L ReleaseReq)

from any SU. Description of the protocol in greater
detail is outside the scope of this paper and can
be found in [3] and [6].

3.4. Modifications of specification

The SDL specification of system V76test in-
cludes one definition of ASN.1 data type choice.
We decided to replace it with an SDL’96-compliant
definition of data type T CHOICE to avoid the
ASN.1 extensions of the ITU-T Recommendation
Z.100 (Fig. 3).

Since simulation and verification with Spin re-
quire a complete system, we supplemented the
specification with a model of its environment. Fig.
3 shows a graphical SDL description of system
V76test that is used in this paper as a reference
SDL specification.

To complete the formal specification of the sys-
tem and eliminate the need for user’s intervention
during the simulation, all decision statements
which were specified as an informal text that ab-
stractly represented user’s arbitrary decisions were
replaced with nondeterministic decision state-
ments (Fig. 6). No other changes of the original
V76test system specification were made.

3.5. System structure

Block environment (Fig. 3) consists of processes
SUa and SUb. They can receive and send all sig-

4

system V76test

SIGNAL
 /* V.76 primitives L-ESTABLISH etc.*/
 L_EstabReq(DLCident),
 L_EstabInd(DLCident),
 L_EstabResp,
 L_EstabConf(DLCident),
 L_SetparmReq,
 L_SetparmInd,
 L_SetparmResp,
 L_SetparmConf,
 L_ReleaseReq(DLCident),
 L_ReleaseInd(DLCident),
 L_DataReq(DLCident, Integer),
 L_DataInd(DLCident, Integer);

SIGNAL
 /* V.76 commands and responses. */
 V76frame(V76paramTyp);

/* Service User to DLC: */
SIGNALLIST su2dlc=
 L_EstabReq,
 L_EstabResp,
 L_SetparmReq,
 L_SetparmResp,
 L_ReleaseReq,
 L_DataReq;

/* DLC to Service User: */
SIGNALLIST dlc2su=
 L_EstabInd,
 L_EstabConf,
 L_SetparmInd,
 L_SetparmConf,
 L_ReleaseInd,
 L_DataInd;

NEWTYPE V76paramTyp
 STRUCT
 presen T_CHOICE;
 I Iframe;
 SABME SABMEframe;
 DM DMframe;
 DISC DISCframe;
 UA UAframe;
 XIDcmd XIDframe;
 XIDresp XIDframe;
ENDNEWTYPE ;

NEWTYPE T_CHOICE
 LITERALS I, SABME, DM, DISC,
 UA, XIDcmd,XIDresp
ENDNEWTYPE ;

SYNONYM maxDLC Integer = 1;

SYNTYPE XIDframe = Integer
ENDSYNTYPE ;

/* DLC Identifier: */
SYNTYPE DLCident =
 Integer CONSTANTS 0 : maxDLC
ENDSYNTYPE ;

NEWTYPE Iframe
 STRUCT
 DLCi DLCident;
 data Integer;
 CRC Integer;
ENDNEWTYPE ;

NEWTYPE SABMEframe
 STRUCT
 DLCi DLCident;
ENDNEWTYPE ;

NEWTYPE DMframe
 STRUCT
 DLCi DLCident;
ENDNEWTYPE ;

NEWTYPE DISCframe
 STRUCT
 DLCi DLCident;
ENDNEWTYPE ;

NEWTYPE UAframe
 STRUCT
 DLCi DLCident;
ENDNEWTYPE ;

/* Simplified V76 model. */

DLCaSU
(su2dlc)

(dlc2su)

DLCaDL
V76frame

V76frame
DLCbDL

V76frame

V76frame

DLCbSU
(su2dlc)

(dlc2su)CRCok

dataLink

DLCa DLCb

environment

Figure 3. Graphical SDL description of V.76 protocol and its environment

nals (protocol primitives) that are defined at the
channels DLCaSU and DLCbSU. The model of the
users defines all possible execution paths that can
be checked with formal verification of the model
of the specification. The complexity of the formal
verification can be directly influenced by different
versions of the model of the users.

Blocks DLCa and DLCb describe the V.76 proto-
col and are identical. Each block consists of two
processes—dispatch and DLC (Fig. 4). Process
dispatch performs management tasks. It can cre-
ate a new instance of the DLC process on user’s

request (signal L EstabReq) or refuse the new con-
nection with signal L ReleaseInd (Fig. 12). Each
data link connection is managed by its own DLC
process.

Block dataLink consists of two processes (Fig.
5). Processes AtoB and BtoA model a simplified
data-link layer which provides an unreliable frame
transfer service (Fig. 6).

3.6. Additional information

The SDL specification without comments con-
sists of 1304 lines of code. It includes most of the

5

block DLCa
SIGNAL
 DLCstopped(DLCident);

DLCaDLDLCaSU

DLCaSUDLCaDLDLCaDL

DLCs

L_DataReq,
L_ReleaseReq,
V76frame

DLCstopped

peer

V76frame
dlcDL2

V76frame

dlcSU

(dlc2su)

(su2dlc)
dlcDL

V76frame

user

L_DataInd,
L_EstabConf

dispatch
(1, 1)

DLC (0,
maxDLC + 1)

Figure 4. Graphical description of block DLCa

block dataLink

/* This block
 models a
 simplified
 data-link
 layer. */

DLCaDL DLCbDL

fromA

V76frame

toB
V76frame

fromB

V76frame

toA
V76frame

AtoB BtoA

Figure 5. Block dataLink

SDL constructs that are used in the real-life spec-
ifications of telecommunications protocols:
– SDL data types and expressions,
– dynamic process creation,
– priority signals,
– implicit transitions,
– spontaneous transitions,
– save construct,
– priority inputs,
– enabling conditions,
– asterisk inputs,

process AtoB
/* Retransmission to peer
 of received signals,
 plus introducing faults. */

DCL
 V76par V76paramTyp;

ready

ready

V76frame(V76par)

ANY

V76frame(V76par)
VIA toB

-

Figure 6. Process AtoB

– direct (PId) and indirect addressing (name of
the process, name of the signal route),

– path limitations introduced by the via state-
ment,

– asterisk states,
– timers and
– procedures.

We believe that their support is crucial for
the adoption of formal verification of SDL-based
designs in the industry. To our knowledge, the
sdl2pml tool is the only tool which supports the
modelling of all the named constructs.

The size of the automatically generated Promela
model depends on the number of included probes.
During our experiments the size of the model was
between 4627 and 5034 lines of code.

4. Modelling of SDL data

Data in SDL are based on the Abstract Data
Type (ADT) concept. An ADT describes the func-
tional properties of data objects. It defines the re-
sult of operations on data objects without con-
straining how this result is obtained. The latter is
up to the implementation of a data object. Prede-
fined data types and data generators are defined in
Annex D to the ITU-T Recommendation Z.100.

6

A set of values with certain characteristics is
called a sort. Operators are defined from and to
sorts. Each sort defines the collection of all the pos-
sible values which can be generated by the related
set of operators. Each value belongs to exactly one
sort. That is, sorts never have values in common.
For most sorts there are literal forms to denote val-
ues of the sort. Literals are a special case of oper-
ators without arguments. Each SDL specification
has a number of partial type definitions, each of
which defines a sort and operators and algebraic
rules associated with that sort.

Although all the data types are abstract, and
the predefined data facilities may even be over-
ridden by the user, SDL attempts to provide a
set of predefined data facilities which are familiar
in both their behaviour and syntax. The follow-
ing are predefined: INTEGER, BOOLEAN, PId,
NATURAL, REAL, TIME, DURATION, CHAR-
ACTER, STRING, CHARSTRING, ARRAY, and
POWERSET [13].

4.1. Variables

Variables are objects which can be associated
with a value by assignment. When a variable is ac-
cessed, the associated value is returned. A variable
access in SDL has a value “error” if the variable is
undefined. If the value is “error”, the further be-
haviour of the system is undefined. The same holds
for cases where variable is assigned a value which
is outside the defined range [13].

Since Promela always initializes variables to
zero, if there is no user-specified predefined value,
all data types in the generated model include an
explicit literal that represents the undefined value,
if possible. For the predefined sorts the highest
value of the sort is used 2 . For user-defined sorts
we model the undefined value with the explicit
literal (Fig. 9). This is required for the sound
modelling of the SDL specification and detection
of undesired behaviour related to the access to the
undefined variable.

The proposed algorithms include predefined
probes that check for the access to the undefined

2 BOOLEAN sort is an exception

variable and perform range check on every assign-
ment statement.

4.2. Predefined Data

Our algorithms support the following predefined
sorts: INTEGER, BOOLEAN, PId, NATURAL,
REAL, TIME, DURATION, CHARACTER,
CHARSTRING, and ARRAY [7].

For the first three sorts corresponding data types
in Promela are used—int, bool and pid.

The NATURAL sort is modelled with the un-
signed data type. Unfortunately, the unsigned data
type cannot be used in the definition of a channel.
Therefore, we use the int data type for the channel
definitions. To keep the same names for sorts in a
specification and a model, we decided to use the
following structure: typedef natural {unsigned
val :31}. This solution provides a model for 31-bit
variables of the NATURAL sort. Promela’s syn-
tax would allow 32-bit values, but Spin version
4.1.1, which was used during our research, reports
an error: “width-field val too large”. In later ver-
sion 4.2.6 usage of a 32-bit value does not produce
an error during the simulation and generation of a
verifier.

Sorts REAL, TIME and DURATION represent
rational numbers. Currently they are modelled
with integers. Their accurate modelling is part of
our current research activities [11].

For the CHARACTER sort we use Promela’s
#define directive for all literals that are defined
in Annex D to the ITU-T Recommendation Z.100.
For each character we have used an unambiguous
mnemonic defined in RFC1345 (Fig. 7).

The CHARSTRING sort is modelled as an ar-
ray of characters which is indexed in the SDL
style—the index begins with 1. It is limited to 32
characters 3 by default, but this can be changed
by the user. All operators associated with the
CHARSTRING sort are modelled with the use of
the inline statements. Fig. 8 shows the model of
the sort and strcpy operator.

Modelling of the ARRAY generator is presented
in the next section.

3 ObjectGeode’s SDL C code generator is limited to 510
characters

7

#define NUL 0

#define SOH 1

.

.

.

#define ZERO 48

#define ONE 49

.

.

.

#define LESS THAN 60

#define EQUALS SIGN 61

.

.

.

#define CHAR A 65

#define CHAR B 66

.

.

.

#define CHAR a 97

#define CHAR b 98

.

.

.

#define TILDE 126

#define DEL 127

Figure 7. Some definitions of CHARACTER sort literals

typedef pt character {unsigned char : 7 = 0}

#define pcv charstring max 33

typedef pt charstring {byte char[pcv charstring max]}

inline strcpy(pfv stringB,pfv stringA){
d step{

pfv tmp=1;
do

:: ((pfv tmp<=pcv charstring max) &&
pfv stringA.char[pfv tmp]!=NUL) −>
pfv stringB.char[pfv tmp]=
pfv stringA.char[pfv tmp];pfv tmp++;

:: else −> break
od

}
}

Figure 8. Modelling of CHARSTRING sort and strcpy

operator

4.3. User-defined Data

Modelling of user-defined sorts presented many
challenges. We describe the proposed solution,
which consists of twelve definitions and seven
algorithms for:

1. analysis and modelling of NEWTYPE defi-
nitions,

2. analysis and modelling of SYNTYPE defini-
tions,

3. analysis and modelling of SYNONYMs,
4. range of values analysis,
5. modelling of expressions,
6. analysis of TIMERs and
7. analysis of variables.
During the static analysis of the system we check

the definition of each sort and try to optimize its
representation in the Promela model—the data

type used in the model is based on the range of
values. The aim is to model variables of every sort
with the smallest possible number of bits. Addi-
tionaly, we take into account the following inher-
ited attributes: range of values and default initial-
ization.

A NEWTYPE introduces a partial data type
definition which defines a distinct new sort. Explic-
itly declared literals are defined as constant values
with the use of the #define directive. Fig. 9 shows
the model of the T CHOICE and Iframe data types
defined in the V76test system (Fig. 3).

A SYNTYPE specifies a set of values of a sort.
A syntype sort has the same semantics as the sort
referenced by the syntype, but might include only
a subset of values compared to the referenced sort.
Syntype DLCident defined in the V76test system
references predefined sort INTEGER, but limits
the range of values to 0:maxDLC (Fig. 3). The
model of the syntype DLCident is shown in Fig. 9.

A SYNONYM gives a name to an expression
which represents one of the values of a sort. The
value which the SYNONYM represents is deter-
mined by the context in which the synonym defini-
tion appears. A SYNONYM has a sort which is the
sort of the ground term. For example, the ground
term for the unity Integer value can be written “1”.
Usually there are several ground terms which de-
note the same value, e.g., the Integer ground terms
“0 + 1”, “3 − 2” and “ (7+5)

12 ” [13]. The algorithm
provides a normal form of the ground term (in this
case “1”) for denoting the value. SYNONYMs are
modelled with the use of the define directive (Fig.
9).

In standard Promela and Spin, timing properties
of the specifications cannot be expressed in a quan-
titative manner. Consequently, we actually verify
the specifications with DT Spin [1], an extension of
the Spin model-checker with discrete time, which
has been developed within the Vires project. Our
modelling of timers is extended with support for
timer parameters [7]. Additionaly, expiration of a
timer is modelled in accordance with [13] as a re-
ception of a signal. This enables the use of the timer
in the priority input and save constructs.

DT Spin is not able to follow the pace of Spin
development. Therefore, our current research in-

8

typedef T_CHOICE {byte val}

#define T_CHOICE__I 1

#define T_CHOICE__SABME 2

#define T_CHOICE__DM 3

#define T_CHOICE__DISC 4

#define T_CHOICE__UA 5

#define T_CHOICE__XIDcmd 6

#define T_CHOICE__XIDresp 7

#define T_CHOICE__undefined__value 8

typedef Iframe {

DLCident DLCi;

int data;

int CRC

}

typedef DLCident {byte val}

#define maxDLC 1

Figure 9. Modelling of user-defined NEWTYPE and SYN-
TYPE sorts and SYNONYM from V76test system

cludes a search for a new model of discrete time in
Promela that could be used with the mainstream
version of Spin [11].

4.4. ADT operators

Each SDL ADT can contain one or more opera-
tors. Tools used in the industry provide interfaces
and skeletons for the implementation of the ADT
operators in C programming language. External
files can include complex functions and define new
data structures and header files. One of the reasons
we decided to use Spin is its support for embedded
C code in a model. Every SDL specification from
our industry projects uses such operators.

Automated generation of a model with support
for the external operators presents a big challenge.
Our current approach is divided into two phases.
First, exhaustive analysis of the SDL specifica-
tion and C code is performed. This phase involves
analysis of data structures, global variables, func-
tion calls, and all external files which are included
through the ADT operator mechanism. Next, we
build a model of the specification [11]. The first
results of our research are promising.

System V76test does not include any opera-
tor definitions, therefore, description of these algo-
rithms is outside the scope of this paper.

5. SDL constructs and communication

Our analysis of the ITU-T Recommendation
Z.100 resulted in 16 additional definitions and 33
algorithms for the modelling of SDL constructs
and communication. In this paper only a high-
level presentation of the main concepts will be
given based on the system V76test presented in
Section 3.

5.1. Hierarchical Structure

System V76test consists of four SDL blocks.
Each block has more than one process. A process
is connected to other processes in the same block
with signal routes or to processes in other blocks
with the use of channels that connect these blocks.
Fig. 4 shows block DLCa with processes dispatch
and DLC. The processes are connected with signal
route DLCs. Process DLC can communicate with the
system user through signal route user, which con-
nects to channel DLCaSU.

5.2. Processes

SDL processes are either created at system ini-
tialization time, e.g., process dispatch, or later
in the lifetime of the system by other processes
in the same block, e.g., process DLC. Each process
instance can be in a different state and therefore
react differently to a signal at a given time. The
number of process instances may change during
the lifetime of the system. The specification de-
fines the initial and the maximum number of pro-
cess instances. An arbitrary number of instances
of a process can be active at the same time if it is
not explicitly specified otherwise 4 . The maximum
number of instances of process DLC is limited by
expression maxDLC + 1. MaxDLC is defined in Fig. 3.

SDL processes are extended communicating
finite-state machines and can be modelled with
Promela proctypes. Our algorithms for modelling
SDL process with the use of Promela’s proctype

4 The maximum number of active processes in a real-life
system depends on the target hardware and configuration.

9

init{

pt__pid offspring;

atomic{

if

:: table__dataLink__AtoB__free <

table__dataLink__AtoB__max ->

offspring = run

dataLink__AtoB(chan__dataLink__AtoB[\

table__dataLink__AtoB__free],_pid);

table_pid_channum[offspring] =\

chan__dataLink__AtoB[\

table__dataLink__AtoB__free];

table_pid_channame[offspring] =\

chan__dataLink__AtoB__select +

table__dataLink__AtoB__free;

table_channame_channum[\

chan__dataLink__AtoB__select+\

table__dataLink__AtoB__free] =

chan__dataLink__AtoB[\

table__dataLink__AtoB__free];

if

::(offspring==0) ->

pv__runtime_error = true;

::(offspring!=0) ->

table__dataLink__AtoB__free++;

fi;

:: else -> pv__runtime_error = true;

fi; ..
.

}

}

Figure 10. Part of generated init process

definition supports dynamic process creation, ex-
pressions in parameters, communication between
processes and their termination.

Process variables are created at the creation of
the process instance—including predefined vari-
ables parent, offspring, and self. The variables
are set to an initial value if specified. In SDL, vari-
ables which do not have an initial value remain
undefined until they are first assigned a value in a
transition. Promela uses a different approach and
always initializes all variables to some explicit or
implicit predefined value. Special care had to be
taken during the construction of the algorithms to
explicitly model the undefined values in a auto-
matically generated model (Fig. 9).

In a model based on our approach all processes
that have the initial number of instances greater
than zero are created by the special process init.
Fig. 10 shows a part of the generated model which
creates one instance of process AtoB. Each process

is allocated a unique process instantiation num-
ber and input queue which is modelled with the
Promela channel (Section 5.3). The new process
executes asynchronously with the existing active
processes from this point on. When the run opera-
tor completes, the new process need not have exe-
cuted any statements. Most of the code in Fig. 10
updates various tables that are part of the model’s
skeleton, which provides a proper infrastructure
for sound modelling of the SDL semantics. To fully
understand the model of the simple process AtoB
(Figs. 10 and 11) would require a detailed explana-
tion of process modelling. This is, unfortunately,
outside the scope of this paper. Details are given
in [7].

The biggest remaining challenge for complete
modelling of the dynamic process creation is a dif-
ferent interpretation of the process termination in
SDL and Promela. An SDL process terminates at
the end of its execution. At that time all associated
resources are released—most notably PId. Promela
distinguishes between the end of the process execu-
tion and its termination. Its resources are released
at its termination, which can occur only when all
younger processes have terminated first. The max-
imum number of simultaneously running processes
is 255. Since each active process is guaranteed to
have a unique PId within the system, it can be
reused only after the process terminates. This dif-
ference might create a problem when we model an
SDL specification where processes do not termi-
nate in the reverse order of their creation. This is-
sue requires further research activities.

5.3. Communication

EachSDL process has an associated input queue.
In the Promela model each proctype has an associ-
ated channel. The number of defined channels de-
pends on the number of expected process instances
during the system execution. If the initial and max-
imum number of processes are not explicitly spec-
ified, the automatically generated model is not in
accordance with [13]. Both values are set to one,
while [13] in this case defines the maximum num-
ber to be unlimited.

The SDL communication infrastructure specifies

10

proctype dataLink__AtoB(pt__chan input;

pt__pid parent){

pt__pid offspring, sender;

byte pv__ptr, pv__cur;

xr input;

V76paramTyp V76par;

goto ready;

ready:

end_1:

do

:: table_channum_ptr[input] > pv__cur ->

table_channum_prio[input]=false;

pv__cur++;

pv__ptr=0;

atomic{

do

:: pv__ptr <= cv__buff-1 ->

if

:: else -> set__clear();

fi;

pv__ptr++ ;

:: else -> goto ready_start;

od;

}

ready_start:

if

:: table_channum_prio[input]==true ->

pv__ptr=0;

do

:: (pv__ptr <= cv__buff-1)

&& (table_channum_nsp[input].\

data[pv__ptr].prio==true) ->

if

:: else -> skip;

fi;

:: (pv__ptr == cv__buff) -> break;

:: else -> pv__ptr++

od;

:: else ->

pv__ptr=0;

do

:: (pv__ptr <= cv__buff-1) ->

if

:: skip__save()

:: else ->

if

::atomic{recv__sig(true,V76frame) ->

input??V76frame(sender,V76par);

update_chan_tab();

}

if

:: true ->

d_step{

pfv_tmp=1;

do

:: pfv_tmp < table__DLCb__dispatch__free ->

pfv_tmp++ ;

:: break;

od;

pfv_tmp--;

};

atomic{

chan__DLCb__dispatch[pfv_tmp]!V76frame(_pid,\

pcv__null,V76par,pcv__null);

table_channum_nsp[table_channame_channum[\

chan__DLCb__dispatch__select+pfv_tmp]].data[\

table_channum_ptr[table_channame_channum[\

chan__DLCb__dispatch__select+pfv_tmp]]].name=\

V76frame;

table_channum_ptr[table_channame_channum[\

chan__DLCb__dispatch__select+pfv_tmp]]++;

}

fi;

goto ready;

:: else ->

if

:: else -> goto ready;

fi;

fi;

fi;

od;

fi;

goto ready;

od;

end: skip

}

Figure 11. Generated AtoB process

which processes can communicate with each other.
The number and type of channel parameters are
acquired by static analysis of the specification. To
avoid state space explosion, each channel param-
eter can be used by more than one signal. Each
associated channel has a potentially different set
or order of parameters. Consequently, if a process
can send the same signal to two different processes,
the send statement potentially has to be modelled

differently—based on the concrete model of the re-
ceiver’s associated channel.

Most of the specifications from the industry we
know use all of the available SDL communication
constructs. The most critical constructs were item-
ized in Section 3.6. For their simultaneous support
a special skeleton for the process body and moni-
toring of the input queue had to be developed [7].
Support for the save construct, priority signal, and

11

process dispatch(1, 1)

ready

L_EstabReq
(DLCnum)

DLCs
(DLCnum)

NULL

DLC(DLCnum,
True)

DLCnum not
used, we create
an instance of
process DLC

DLCs(DLCnum)
:= OFFSPRING

We store into the
table the PID of
the new instance

ELSE

L_ReleaseInd
(DLCnum)

waitUA

DLCstopped
(DLCnum)

L_ReleaseInd
(DLCnum)

DLCs(DLCnum)
:= NULL

-

waitUA

V76frame
(V76para)

V76para ! presen

UA

V76frame
(V76para)
TO DLCs
(V76para
! UA ! DLCi)

ready

ELSE

-

Figure 12. Part of SDL specification of process dispatch

all forms of addressing is especially important.

6. Verification of model with probes

The model of the environment defines all possi-
ble execution paths that can be checked with the
formal verification of the model of the specifica-
tion. The sdl2pml tool supports two approaches:

1. the environment is modelled within the SDL
specification or

2. the environment is modelled in Promela.
With the second approach the sdl2pml tool pre-
pares needed communication infrastructure based
on the channel and signal route definitions. We
chose the first approach (Fig. 3).

We started formal verification with the most
general model of the environment. Processes SUa
and SUb in block environment could receive and
send all signals (protocol primitives) that are de-
fined at the channels DLCaSU and DLCbSU with one
important limitation that prevented aggressive
sending of signals: any signal can be sent only after
the reception of any signal. The order of signals
was not imposed.

6.1. Depth-first search

The formal verification of this model stops after
37 ms in the 997th step and reports invalid end
state 5 . The size of the state-vector is 1940 bytes
and total actual memory usage is 4260 kB. The
examination of the counterexample shows that the
model has infinite execution paths. Therefore, all
regular wait states should be labelled as valid end
states. The formal verification of the supplemented
model again terminates due to an invalid end state.

The examination of the counterexample (Fig.
13) exposes problems in the processes dispatch
(Fig. 12). If users SUa and SUb begin with the DLC
establishment (Fig. 2) “simultaneously”, processes
dispatch remain at the end of execution in the
state waitUA. They are endlessly waiting for the
reception of the signal V76framewith command UA
which would acknowledge successful DLC estab-
lishment. A detailed explanation of the execution
path follows. On receipt of an L-ESTABLISH re-
quest primitive (signal L EstabReq) from its SU,
the processes dispatch attempt to establish the

5 Intel(R) Xeon(TM) CPU 2.40GHz (4778.59 bogomips)
with 2 GB of RAM.

12

L_EstabReq L_EstabReq

environment datalink DLCb

 SUb

environment

 SUa

 DLC

 DLCa

 DLC

 DLCb

 dispatch dispatch

 DLCa

DLCstopped
DLCstopped

SABMESABME

SABME
SABME

SABME

SABMESABME

SABME
SABME

SABME
SABME

SABME SABME

SABME
SABME

SABME
SABME

Figure 13. MSC of the “dispatch’s end state”counterexample

DLC. Both processes create a new instance of pro-
cess DLC and go to the waitUA state. The DLC
establishment continues with the SABME frame.
If a peer DLC entity, based on the response from
its SU (signal L EstabResp), is able to establish
the DLC, it shall respond with command UA and
enter the connected state. Otherwise it should re-
spond with Disconnect Mode (DM). This never hap-
pens, because all SABME signals result in implicit
transition in the processes dispatch. After three
unsuccessful retransmissions processes DLC termi-
nate. Notification signal DLCstopped also results
in implicit transition and the system remains in
a deadlock. The system would arrive to the same
deadlock on recursive signal loss in the dataLink
block. This behaviour is not in accordance with the
ITU-T Recommendation V.76. Therefore, we sup-
plemented the processes dispatch with the recep-
tion of the signal DLCstopped in the waitUA state.

6.2. Breadth-first search

The formal verification of the supplemented
model with the default depth-first search termi-
nates in the 2590th step due to an invalid end
state. The examination of relatively complex coun-
terexample exposes problems with the associated

input queue of the dispatch processes. The prob-
lems are independent of the number of slots in
the input queue and are triggered by the user’s
rejection of the DLC establishment.

Breadth-first search of the same model termi-
nates after 262 steps and exposes a problem that
arises due to an unexpected user behaviour—
the SUb process responds to the L SetparmInd
signal with the start of the DCL establishment
(L EstabReq). Both problems remain in the final
corrected version of the SDL system in [3]. This
verification run demonstrated the need for greater
changes in the SDL system. We wanted to com-
pare our verification results with the results from
[3], hence, we decided to limit the behaviour of the
protocol users in the environment block.

6.3. Additional errors

The subsequent verification runs exposed a num-
ber of additional shortcomings of the system. The
system reaches a deadlock because the dispatch
process remains in the waitUA state after the re-
jection of the user’s request for the establishment
of the already active DLC.

Processes DLC does not finish execution in a valid
end state if data transfer or DLC release stages of

13

the protocol connection never happen. The ITU-
T Recommendation V.76 deals with such execu-
tion paths with the inactivity timer T403. This
timer was not included in the SDL system V76test.
We decided to ignore this problem with additional
valid end states in processes DLC.

If user SUa requests the exchange of the iden-
tification while DLC is established and user SUb
does not respond to the request, the dispatch pro-
cess in the DLCb block remains in a state where all
signals from the environment result in an implicit
transition. Attempt to resolve this issue with the
save construct [3] is not valid because it blocks the
active DLC until the reception of the response to
the exchange of the identification request. Addi-
tionaly, the input queue of the dispatch process
would get full, since user SUb might never respond
to a request. We had to extend the SDL specifica-
tion of the protocol with the stop timer T401 [6]
to continue with the formal verification.

6.4. Search for shortest trail

The formal verification of the supplemented
model terminated in the 9393rd step. The very
long execution path motivated us to search for
the invalid execution path with the shortest trail.
Verification terminated at the 470th step after
five errors in 4670 ms. Total memory usage was
1548 kB. This error occurs when user SUa requests
DLC release with signal L ReleaseReq immedi-
ately after its establishment (Fig. 2). Request is
forwarded by the dispatch process to the block
dataLink with command DISC. The data-link
layer provides an unreliable frame transfer service.
In this execution path command DISC is lost in
the AtoB process. The ITU-T Recommendation
V.76 handles this with the retransmission of the
DISC command after the expiration of the timer
T401. After N400 unsuccessful retransmissions
the DLC process should inform the dispatch pro-
cess and terminate. Formal verification showed
that the SDL specification does not include this
mechanism. Again, accordance with [3] imposed
additional changes in the SDL specification—
elimination of the nondeterministic decision in
the processes AtoB and BtoA (Fig. 6). Now, the

data-link layer provides a reliable frame transfer
service.

6.5. Additional limitations of environment

The subsequent formal verification runs exposed
additional issues in the dispatch process. We had
to additionally limit the behaviour of the protocol
service users to the sequence of signals that is in
accordance with Fig. 2. First, exchange of the iden-
tification is performed. It is followed by the DCL
establishment. Next, data transfer is conducted.
Finally, DCL is released.

In spite of these changes, formal verification of
the automatically generated model provides addi-
tional counterexamples. One of them demonstrates
unsuitability of the default size for the associated
input queues (three slots). If command SABME is
retransmitted and saved three times, input queue
of the process dispatch could block signal recep-
tion. We set the size of the input queues to four
to resolve this issue. Up to this point all problems
arose due to the invalid end states.

6.6. Permanent probes

When all end states in the verification model are
valid, permanent probes can be used to check if
the specification is in accordance with the semantic
rules of SDL. A counterexample demonstrated that
the range of values definition by one of the user-
defined sorts could be violated by the environment
process SUa.

6.7. Predefined probes

Next, predefined probes can be used to check
for execution paths that are in accordance with
the SDL semantics, but can result in an unde-
sired behaviour, e.g., implicit transitions. Some-
times implicit transitions are used intentionally.
Therefore, the sdl2pml tool provides mechanism
for their exclusion—probes are not inserted in the
model for the chosen signals. We excluded probes
for the reception of signals L SetparmResp and
L EstabResp in processes dispatchwhen they are

14

Table 1
Possible implicit transitions in SDL system

block process state signal

env. SUa waitEstabConf L ReleaseReq

DLCb dispatch ready L SetparmResp

DLCb dispatch ready L EstabResp

DLCb dispatch waitParmResp L EstabResp

DLCb dispatch waitParmResp L ReleaseReq

DLCb dispatch waitEstabResp L SetparmResp

DLCb DLC waitUAdisc L ReleaseReq

in the state ready. Table 1 presents all possible
implicit transitions in the current SDL system.

6.8. User-defined probes

Tool sdl2pml supports explicit definitions of un-
desired paths. An example of such definition could
be the SDL decision statement where we never ex-
pect the else part to be executed. If we put probes
in all such else parts, formal verification stops in
the 1932nd step. The counterexample shows the
execution path where process dispatch ignores the
command DM. Fig. 12 shows that only command UA
is handled. This presents an undesired behaviour.
Formal verification of the corrected SDL specifi-
cation exposes another similar problem in the DLC
process.

After the correction of these errors, the SDL
specification is ready for the verification of require-
ment specifications written with LTL formulae.

6.9. LTL system requirements specification

We can check if the statement “if the signal is
send by the sender, it is always received at the re-
ceiver” holds with the formula �(p → �q) ∧ �p.
The p represents the probe which is inserted at
the sender and the q represents the probe that is
inserted at the receiver. Both probes can be com-
posed of many subprobes if the signal can be sent
or received in a number of states. Table 2 shows
results of the formal verification runs for a number
of signals.

Formal verification of the first claim confirms
that user SUb always receives signal L SetparmInd
if user SUa initiates the exchange of identification
with signal L SetparmReq.

The counterexample from the formal verification
of the second claim shows that the second part of
the identification exchange is not as reliable. The
same holds for the third claim, since the modified
model of the user SUa never begins with the DCL
establishment until it successfully completes the
exchange of identification.

The counterexample from the formal verifica-
tion of the fourth claim presents the execution
path where signal L DataReq is never sent. This is
in accordance with the requirement specification.
Therefore, the formula was changed to �(p → �q).
Now, formal verification stops at the 3084th step
and uncovers an execution path where data can
be lost (Fig. 14). This happens if the SUb requests
the DLC release right after its establishment, while
the SUa already sent L DataReq. Counterexample
demonstrates the implicit transition upon the re-
ception of the information frame (signal I) in the
DLC process. The formal verification ran for almost
52 minutes and used 709742 kB of memory.

The last claim confirms our previous findings
that the SDL specification does not include a mech-
anism for the termination of the inactive DLC.
Therefore, DLC release might not be initiated af-
ter successful DLC establishment.

7. Conclusion

Our intention was to give a reader an impression
of the complexity of the automated generation of
a Promela model from an SDL specification and to
present our research results. A detailed description
of the algorithms and implementation details are
outside the scope of this paper. The implementa-
tion consists of more than 100.000 lines of C code.

During the verification of the automatically gen-
erated model of system V76test all errors that are
presented in [3] were found. We managed to find
some additional limitations of the specification.

There are still a lot of unresolved issues. We
would like to point out some of them:

15

Table 2

Formal verification of LTL-expressed system requirement specifications

p q result

(process, state, signal) (process, state, signal) �(p → �q) ∧ �p

SUa, start, L SetparmReq SUb, ready, L SetparmInd holds

SUb, ready, L SetparmResp SUa, waitParmResp, L SetparmConf does not hold

SUa, start, L SetparmReq SUb, ready, L EstabInd does not hold

SUa, waitEstabConf, L DataReq SUb, ready, L DataInd does not hold

SUa, waitEstabConf, L EstabConf SUa, (waitEstabConf, SUa endstate),
L ReleaseReq

does not hold

 dispatch

 DLCaenvironment

 SUa

 datalink DLCb

 dispatch

environment

 SUb

XIDcmdL_SetparmReq

XIDresp

L_EstabReq

SABME

(0,T)
 DLC

 DLCa

XIDrespL_SetparmConf

 DLC

 DLCb
(0,F)

UA UA

UA
L_EstabConf

L_DataReq L_DataReq

DISC

SABME
L_EstabInd

L_EstabResp

L_SetparmResp

XIDcmd
L_SetparmInd

L_ReleaseReq

DISC

DISC

L_ReleaseInd DLCstopped
I

I

I
UA

UA

UA

DLCstopped

L_ReleaseReq

L_ReleaseInd

Figure 14. MSC of “data loss” counterexample

16

– different interpretation of the process termina-
tion in SDL and Promela,

– suboptimal use of the unsigned data type in the
C code of the verifier — all unsigned variables
are presented as unsigned int,

– suboptimal use of the bit and bool data types in
the C code of the verifier — all arrays of these
two types are presented as unsigned char,

– the data type that defines a structure with an
array element cannot be used in a channel defi-
nition.
Our future research will focus on these issues.

Next, we want to extend the sdl2pml tool with a
new model of discrete time which could be used
with the mainstream version of Spin. Addition-
ally, we are working on semi-automatic inclusion
of embedded C code that is used in real-life speci-
fications with the ObjectGeode’s extension of the
SDL’s ADT concept.

Currently we are testing the sdl2pml tool on a
real-life industrial specification of the ISDN User
Adaptation protocol. Our final goal is to promote
formal verification as an equally important part of
the development process and to help our industrial
partners with their efforts to manufacture a reliable
product.

Acknowledgements

This work was partly funded by the European
Regional Development Fund, Slovenian Ministry
of Higher Education, Science and Technology, and
Iskratel d.o.o. under the Information and Commu-
nication Technologies Centre of Excellence R&D
project Correctness Verification of Communica-
tion System Functioning.

References

[1] D. Bošnački, Extending Promela and Spin with
Discrete Time, in: Proc. of the VIII Conference on
Logic and Computer Science (1997).

[2] M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P.
Krimm, L. Mounier, and J. Sifakis, If: An Intermediate
Representation for SDL and its Applications, in: Proc.
of SDL-FORUM’99, (Montreal, Canada, 1999).

[3] L. Doldi, Validation of Communications Systems with
SDL: The Art of Simulation and Reachability Analysis
(John Wiley & Sons, Ltd, West Sussex, England,
2003).

[4] G.J. Holzmann, Practical methods for the
formal validation of SDL specifications, Computer
Communications 15(2)(1992) 129–134.

[5] G.J. Holzmann and J. Patti, Validating SDL
specifications: An experiment, in: C. Vissers and
E. Brinksma, ed., Proc. 9th Int. Conf on Protocol
Specification, Testing, and Verification, INWG/IFIP
(Twente, Netherland, 1989) 317–326.

[6] ITU-T, Generic multiplexer using V.42 LAPM-based
procedures, Recommendation V.76, 1996.

[7] B. Vlaovič, Automatic Generation of Models with
Probes from the SDL System Specification, Ph.D.
Thesis (in Slovene), Faculty of Electrical Engineering
and Computer Science, University of Maribor, 2004.

[8] B. Vlaovič and Z. Brezočnik, Testing of Switch Node
with Call Generator Software Module, in: Proc. of the
IASTED international conference, Applied informatics
(IASTED/ACTA Press, Zürich, Switzerland, 2000)
568–574.

[9] B. Vlaovič and Z. Brezočnik, Analog Subscriber Call
Generator, Electrotechnical Review, 69(5)(2002) 259–
265.

[10] B. Vlaovič, A. Vreže, Z. Brezočnik, and T. Kapus.
Verification of an SDL Specification — a Case Study,
Electrotechnical Review, 72(1)(2005) 14–21.

[11] A. Vreže, Extending Automatic Modelling of SDL
Specifications in Promela with Embedded C Code
and a New Model of Discrete Time, Ph.D. Thesis
(in Slovene), Faculty of Electrical Engineering and
Computer Science, University of Maribor, 2006.

[12] A. Vreže, B. Vlaovič, Z. Brezočnik, and T.
Kapus, Development of MGCP protocol stack for
SI2000 digital switch node, Electrotechnical Review,
72(1)(2005) 22–29.

[13] ITU-T, Specification and Description Language
(SDL), Recommendation Z.100, 1993.

17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

