
Elektrotehniški vestnik 72(1): 22–29, 2005
Electrotechnical Review, Ljubljana, Slovenija

Development of MGCP protocol stack for SI2000 digital
switch node

Aleksander Vreže, Boštjan Vlaovič, Zmago Brezočnik, Tatjana Kapus
University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova ulica 17, 2000 Maribor, Slovenia
e-mail: faleksander.vreze, bostjan.vlaovic, brezocnik, kapusg@uni-mb.si

Abstract. In this article, the development of software for SI2000 digital switch node is described, focusing on
software architecture for a MGCP protocol stack. A decoder and an encoder for the MGCP protocol have been
developed with the PCCTS tool version 1.33, which supports generation of top-down LL(k) parsers in C and C++
programming language. Software planning phase is a very important and time-consuming task, but it is also
important to investigate how to implement requested functionality and guarantee proper scalability. To meet the
scalability requirements, we had to extend the PCCTS tool with the support for parallel execution of more than
one decoder and encoder. Telecommunication management applications also have to support decoding and
encoding of MGCP messages. To enable such support for these kinds of applications, we developed an OCX
control for the MGCP protocol.

Key words: telephone switch, parser, ANTLR, PCCTS, MGCP, SDL

Razvoj protokolnega sklada MGCP za telefonsko centralo SI2000

Povzetek. Prispevek predstavlja razvoj programske opreme
za telefonsko centralo SI2000. Podrobneje je predstavljena
arhitektura programske opreme ter razvoj razpoznavalnika in
konstruktorja za protokol MGCP, ki se uporablja za krmiljenje
medijskih prehodov. Programsko opremo smo razvili s pomočjo
prosto dostopnega orodja PCCTS verzije 1:33, ki omogoča
generiranje kode v programskih jezikih C in C++. Program-
sko opremo je treba načrtovati tako, da bo omogočala nadgrad-
nje in da bo skalabilna. Orodje PCCTS smo dopolnili tako, da
je omogočeno sočasno izvajanje več razpoznavalnikov in kon-
struktorjev. Protokol MGCP se uporablja v telekomunikacij-
skih omrežjih naslednje generacije. Aplikacije, ki se uporabl-
jajo za nadzor perifernih naprav, bodo morale, poleg obstoječih
protokolov, podpirati tudi razpoznavanje in tvorjenje sporočil
MGCP. Za podporo takšnih aplikacij smo razvili kontrolo OCX
za protokol MGCP.

Ključne besede: telefonska centrala, razpoznavalnik, ANTLR,
PCCTS, MGCP, SDL

1 Introduction

Prof. A. Graham Bell introduced his “wonderful and
miraculous discovery” called “The Telephone” to the gen-
eral public in the year 1877. Since then the telecommu-
nication market has been changing. In the last decade,
changes were greatly influenced by the rapid development
of packet-based networks — especially IP networks. Cur-
rently, we are facing a great challenge of transition from

Received 30 January 2004
Accepted 14 February 2005

traditional Circuit Switched Network (CSN) to the packet
based Next Generation Network (NGN). Manufacturers
and carriers need to adapt to the new technologies to keep
up with the ever changing market.

In this paper, introduction of the Media Gateway Con-
trol Protocol (MGCP) into the SI2000 digital switch node
is presented. MGCP is one of the protocols in the NGN
architecture and represents a core of the Media Gateway
Controller (MGC) and Media Gateway (MG). A decoder
and an encoder for the protocol were implemented in the
C programming language�. For the development of the
decoder a parser generation tool was used, whereas the
encoder was written by hand. To meet scalability require-
ments, the tool was extended with the support for parallel
execution. Additionaly, we developed an OLE Control
Extension (OCX) for the decoder and encoder, which can
be used in applications for the Windows operating system.

This paper is organized as follows. First, an overview
of the MGCP protocol is given. The architecture of the
SI2000 digital switch node is presented in Section 3. A
basic description of the MGCP software architecture is
given. In the next section, a brief overview of the PCCTS
tool is shown. In Section 5, architecture of the decoder
and encoder for the MGCP protocol is outlined. Finally,
a practical example is given. In the conclusion, we com-
ment our work and give directions for further study.

�The project was partly funded by the Iskratel d.o.o.

2 Vreže, Vlaovič, Brezočnik, Kapus

2 Media Gateway Control Protocol

The MGCP protocol is used in the communication be-
tween MGC and MG (Fig. 1). It is an ASCII-based,
application-layer control protocol which can be used to
establish, maintain, and terminate calls between two or
more endpoints.

The MGCP connection model consists of endpoints
and connections. Endpoints represent physical or virtual
sources through which data can flow, and connections
represent data paths. MGCP endpoints execute instruc-
tions received from MGC [1].

MGCP is designed to address the functions of signal-
ing and session management within a packet telephony
network. Signalling allows call information to be car-
ried across network boundaries while session manage-
ment provides the ability to control the attributes of an
end-to-end call [2]. Figure 1 presents the flow of a basic
call where User A calls User B.

Off−hook

RequestIdentifier

Dial tone

Digits

Notify

Response

MGC
User BUser A

MG2MG1

ModifyConnection

ModifyConnection

Ringing

Off−hook

Response

Response

CreateConnection

Notify

Response

Response

RequestIdentifier

Ringback

Response

Response

Response

Notify

CreateConnection

Notify

Call Established

Figure 1. MGCP protocol is used for communication between
MGC and MG

2.1 MGCP Commands

The MGCP protocol defines nine commands (Tab. 1),
some being sent from MGC to MG and some from MG
to MGC (Fig. 1). Each MGCP message is composed of
a command line, parameter lines and optionally a Session
Description Protocol (SDP) part [3], which describes the
connection parameters such as User Datagram Protocol
(UDP) port and Internet Protocol (IP) address.

Command TransactionID EndPointID Version
(Parameter_name: Value)*

SDP

The command line is composed of a command verb, a
transaction identifier, an endpoint name and the protocol
version. These four items are separated from each other
by a space. Parameter lines are composed of a parameter
name followed by a colon, a white space and parameter
value. In the following lines a valid MGCP message sent
from the MGC to the MG1 is shown.

CRCX 1209 MG1@uni-mb.si MGCP 1.0
C: 3242342
M: SENDONLY

v=0
c=IN IP4 128.96.41.1
m=audio 3456 RTP/AVP 0

Command Description

EPCF EndpointConfiguration
CRCX CreateConnection
MDCX ModifyConnection
DLCX DeleteConnection
RQNT NotificationRequest
NTFY Notify
AUEP AuditEndpoint
AUCX AuditConnection

Table 1. MGCP protocol defines nine commands

3 SI2000 Digital Switch Node

Iskratel SI2000 digital switch node’s capacity spans from
a few hundred to several thousand ports. It is an advanced
modular system which offers basic functionality as well
as a wide range of services including PSTN, ISDN, SS7,
MGCP, H.323, Centrex, IP Centrex, and SIP-T.

At the moment, a great effort is allocated to the devel-
opment of the NGN protocol suite with the ambition to
support subscribers with packet-based access and smooth
transition to NGN-based operation. We will focus only
on the development of the MGCP protocol stack. First,
a short introduction to the software architecture will be
given. Its intention is to prepare the reader for a better
understanding of the following sections.

The software provides the functionality, control, and
management of the system. Most of it is written in Speci-
fication and Description Language (SDL). Various low-
level drivers for the peripheral devices and processor-
intensive parts of the protocol stack are implemented in
C and C++.

SDL has been developed by the switching systems in-
dustry and is standardized by ITU-T [4]. It is based on
finite state automata, but it uses graphical representation

Development of MGCP protocol stack for SI2000 digital switch node 3

of flowcharts to show the allowed transitions. Today, sev-
eral commercial and academic tools with support for SDL
are available. We are using Telelogic’s ObjectGEODE
v4.0 for the academic work and GEODE editor v.2.2.4 for
the work on the SI2000 product family. The tool support
comprises graphical editing, simulation, code generation,
testing, validation, and some verification.

At the highest level of an SDL hierarchical specifica-
tion there is a system object. The system is the entry point
to the SDL specification. It comprises a set of blocks and
channels. Blocks can be connected to each other and with
the environment by channels. A block is described by
sub-blocks or a set of processes. A process is defined by
a process graph which usually consists of several pages of
state transitions. Processes describe system behaviour. A
more detailed description of SDL can be found in [5, 6].

3.1 MGCP Software Architecture in SI2000

Figure 2 shows the architecture of the SI2000 MGCP soft-
ware modules. It consists of two main parts — SDL and
C. SDL describes signalling, signalling control, and con-
nection control. The decoder and encoder of the pro-
tocol are implemented in C with the use of the Purdue
Compiler Construction Tool Set (PCCTS). Communica-
tion between both parts is achieved with the Abstract Data
Type (ADT) definitions in the SDL description. They
provide access to the Application Programming Interface
(API) functions of the MGCP decoder and encoder for the
SDL part of the system. We have changed some names of
the blocks and processes to improve readability of the pa-
per. The architecture is divided into three levels (Fig. 2):

1. application control level (block Coco),

2. protocol control level (block PrCo), and

3. TCP/IP control level (block IPCo).

The application control level manages Digital Signal
Processing (DSP) channels and controls Time Division
Multiplexer (TDM) switch connections, whereas the pro-
tocol control level executes transactions control and sig-
nalling retransmission. The TCP/IP control level manages
IP connections (Fig 2).

The UDP Mng process manages the UDP protocol. It
receives an UDP packet from the lower layer and forwards
an MGCP message to the upper layer, and vice versa. The
PrCo block consists of two processes. MGPC Mng man-
ages MGCP PC processes and acts as a multiplexer for the
communication with the lower layer and external C code
(decoder and encoder). MGPC Mng parses the received
signal from UDP Mng through the API functions of the
MGCP decoder and forwards the received MGCP mes-
sage to the appropriate MGCP PC process. Since UDP
is used as a transport protocol, message flow control is
managed by the MGCP PC process. Each MGCP user has

to/from upper layer

process creation

PrCo

l
e
v
e
l

CoCo

decoder/encoder
MGCP

c
o
n
t
r
o
l

l
e
v
e
l

a
p
p
l
i
c
a
t
i
o
n

to/from lower layer

MGPC_Mng

MGAC_Mng

IPCo

external C code SDL signal

c
o
n
t
r
o
l

ADT/API

UDP_Mng

l
e
v
e
l

T
C
P
/
I
P

p
r
o
t
o
c
o
l

c
o
n
t
r
o
l

MGCP_AC

MGCP_PC

Figure 2. MGCP decoder and encoder integrated in the existing
software architecture of SI2000

his/her own MGCP PC process instance (Fig. 2). This de-
composition follows recommendations from [1, 7]. Af-
ter successful reception at MGCP PC the message is for-
warded to the MGCP AC process.

The same procedure is followed when the message is
created by the system. MGCP PC receives the data from
the upper layer (an MGCP AC process). The data are for-
warded to MGPC Mng. It creates an MGCP-compliant
message with the use of the MGCP encoder. Commu-
nication between the MGPC Mng process and the MGCP
decoder and encoder is realized by external ADT opera-
tors. Next, the message is sent to the UDP Mng process
and forwarded to the IP network.

Figure 3 describes process creation and communica-
tion between the described processes. Solid lines repre-
sent communication between processes by SDL signals
while the dotted lines indicate requests for process cre-
ation. Figure 3 presents process creation during reception
of an MGCP message. The UDP Mng process receives
an UDP packet from the IP network and forwards the
MGCP message part of the packet to MGPC Mng. If de-
coding of the message is successful, the MGPC Mng pro-
cess fills its internal structure and sends it with an SDL
signal to an MGCP PC process. If the process does not
exist for the current transaction, a request for creation is
used. The MGCP PC process checks the received data and
forwards them to a peer instance of the MGCP AC pro-
cess. If the MGCP AC process instance does not exist,
MGCP PC sends an SDL signal with the creation request
to the MGAC Mng process.

The above example tries to illustrate how a chain of
processes is created, when a new MGCP message is re-
ceived from the IP network. The procedure for the cre-

4 Vreže, Vlaovič, Brezočnik, Kapus

DECODER MGAC_MngMGPC_Mng

MGCP message
decode[MGCP_message]

get[parameter]

return[parameter]
.
.
.

SDL signal

process creation

Request for

ADT interface

SDL structure with message data

UDP
packet

UDP_Mng

freeMemory[]

MGCP_PC

proc. creation

decodedStatus[]

selected message data
SDL structure with

MGCP_AC

Figure 3. Process communication when an MGCP message is received

ation of the outgoing message process chain is similar.

4 Parser Generator Tools

The decoder for the MGCP protocol was developed with a
PCCTS tool. At version 2:0:0, it was renamed to ANTLR.
More information about the tool is available in [8].

PCCTS was developed in C. The last released version
in 1994 supported code generation in C and C++. The
tool supports many kinds of operating systems including
Linux and Windows. It is a public domain tool and there
are no legal restrictions on its use. Reasons for choos-
ing this tool are: the tool is free, its source code is avail-
able, and it includes an efficient error recovery mecha-
nism. One of the project requirements was that the im-
plementation should be carried out in C language. In this
section, a brief overview of the PCCTS tool will be given.

4.1 PCCTS Tool

The PCCTS tool version 1.33 includes the following util-
ities [9, 10]:

1. DLG,
2. ANTLR,
3. SORCERER.

DLG is a tool which produces a deterministic finite
automaton for recognizing regular expressions. ANTLR
is a tool for creating a parser. It reads a grammar descrip-
tion and builds a set of parsing functions for a top-down
parser. The third utility, SORCERER, is a tree parser gen-
erator. In our work, DLG and ANTLR were used. PCCTS
has the following nice properties:

� it integrates description of lexical and syntactic anal-
ysis in one file,

� easy debugging and rich debug information,

� it has a manual and as well as an automatic error
recovery mechanism,

� each grammar rule has parameters in return values,

� it accepts grammar in Extended Backus-Naur Form
(EBNF),

� the parser generated by ANTLR is human-readable.

PCCTS supports C or C++ interface parsing model.

4.1.1 DFA Lexical Analyzer Generator

The DLG tool reads a lexical description and creates
Deterministic Finite Automatan-based a lexical scanner
function. The lexical description consists of one or more
tokens. Each token starts with the token directive. This
may be continued by a token name, which must start with
an upper-case letter. This is followed by a regular expres-
sion which represents the character string that matches
this token (Fig. 4a).

Each regular expression which is part of a token
definition may be followed by a lexical action en-
closed within “<<” and “>>”. A lexical action (e. g.
myErrorFunction()) will be executed every time a
lexical analyzer finds the HEX token type in the input
character string (Fig. 4a). Usually, a lexical action rep-
resents a call of one or more C functions. PCCTS defines
a number of functions and symbols that can be used. It is
also possible for a user to define new functions.

Development of MGCP protocol stack for SI2000 digital switch node 5

4.1.2 Parser Generator

ANTLR generates a recursive descent parser from a
grammar in C and C++ language.

ANTLR grammar description is a collection of rules
and actions preceded by a header. A rule is a list of pro-
ductions, which are separated by symbol “j”. Each rule
may contain arguments, local variables and return values
(Fig. 4b).

rule: production_1.
.
.

| production_n
;

(c)

(b)

(a)

rule[par_1,...] > [ret_1,...];

; << myErrorFunction(); >>

ruleCallID[char *ID]:
HEX << strcpy(ID, $1); >>

#token HEX [0−9A−Fa−f]+ << myErrorFunction();>>

Figure 4. PCCTS overview

The ruleCallID contains an argument ID and the
production HEX which represents a hexadecimal number
(Fig. 4c). When a lexical analyzer finds the HEX token
type, the strcpy function will be executed. If a lexi-
cal error occurs, function myErrorFunction() will
be executed.

4.1.3 PCCTS Input Format

PCCTS input file ends with “.g” extension and may be
broken up into many different files. In our work we used
C interface parser.

Figure 5 shows a simple example of PCCTS input file.
This example illustrates to the reader how PCCTS C pro-
gramming interface can be used.

ruleCallID[char *ID]: HEX << strcpy(ID, $1); >>
; << myErrorFunction();>>"@"

#lexclass START

#token HEX "[0−9A−Fa−f]+"
#token "[\ \n\t]+" << zzskip(); >>

#header << #include "charbuff.h" >>

}

char hexBuffer[100];
main() { printf("Write hex number: ");

>>
}

 printf("Error in decoder\n!");
<< void myErrorFunction(){

 printf("Parsed number is: %s\n", hexBuffer);
 ANTLR(ruleCallID(hexBuffer), stdin);

Figure 5. PCCTS input file — C programming interface

The input file can be divided into four sections.
In the first section, header files (charbuff.h) can
be included. In the second section, user func-
tions (myErrorFunction), constants and variables
(hexBuffer) can be defined. It can also include the
main function. In our example we call macro ANTLRwith
two parameters: the first one is a parsing rule and the sec-
ond one presents the type of input stream (stdin). The
third section presents the lexical description, which con-
sists of token definitions. A grammar description is de-
fined in the last section. End of the input stream is marked
by the “@” symbol. In the next lines a grammar definition
for the PCCTS input file is shown.

{ #header Action }
(Action | tokenDef | eclassDef)*
(rule | tokenDef | eclassDef)+
(Action | tokenDef | eclassDef)*

Generation of the decoder source code is executed
in two steps. First, the input file is compiled with the
ANTLR tool. Objects of this compilation are some
“.c” files (depending on the number of input files) and
parse.dlg file. Next, parse.dlg file and some other
“.c” files are compiled with the DLG tool. Both ANTLR
and DLG tools give the user plenty of possibilities. More
information is available in [11].

5 MGCP Decoder and Encoder

During the development of the MGCP decoder and en-
coder RFC 2705 was used as a primary source of the pro-
tocol specification. In the current version, we support a
required subset of parameters defined in the RFC speci-
fication and some proprietary extension parameters. For
the final implementation the C language was used. The
source code should be short, readable and easy to main-
tain. The program was designed to run under various
operating systems including Linux, Windows, VxWorks,
pSOS and HP-UX.

The prepared input file for the PCCTS tool consists
of 2294 lines while the generated file contains 6555 lines.
The size of the executable file, compiled with gcc ver-
sion 2.95.4 on Linux operating system, is 241 kB. The
MGCP protocol standard defines 24 parameters. We im-
plemented 20 of them and some additional extension pa-
rameters.

The MGCP decoder and encoder consist of four mod-
ules: decoder, encoder, data structures and API functions
(Fig. 6).

The decoder was developed with the PCCTS tool. Its
function is parsing of MGCP messages. The encoder was
developed directly in C language. It creates a valid MGCP
message from data stored in internal structures of the en-
coder. In the data structures, elements of a MGCP mes-
sage are stored. Each message is its own data structure.
The API functions module is divided into two groups

6 Vreže, Vlaovič, Brezočnik, Kapus

encoder APIdecoder API

API functions

decoder source
code

encoder source
code

data structures

Figure 6. MGCP decoder and encoder modules

(Fig. 6). The first group consists of functions that re-
turn value of an individual MGCP parameter, while the
second group consists of functions for creating a MGCP
message. Each function returns a status of the operation,
whereas data are passed as a parameter to the function.

Communication between the SDL processes and the
decoder and encoder is achieved by ADT operators
(Fig. 2, Fig. 3, Fig. 11). When a user calls the func-
tion MGCP makeDecode(MGCP message), the de-
coder parses the MGCP message and fills internal data
structures. If an error occurs, the function returns an error
status. Each parameter is obtained with a separate call
of its own API function. When all parameters are re-
trieved, the allocated memory has to be realised with a
MGCP makeClose() function. Usage of the decoder
API functions is shown in Figure 7.

...

status = MGCP_makeDecode(MGCP_message);

if(status) status = read_CommandType(messageType);

/* read transactionID */

if(status) status = read_TransactionID(transactionID);

/* read other parameters */

/* free allocated memory*/

if(status) status = MGCP_makeClose();

/* decode message */

Figure 7. Usage of the MGCP decoder API functions

The usage of the encoder is very similar to the
usage of the decoder. First, memory allocation and
initialisation of the encoder data structures is per-
formed by MGCP makeEncode(typeOfMessage).
Next, internal structures are prepared (Fig. 8). Fi-
nally, the construction of a new MGCP message is done
with MGCP makeString(newMGCPMessage). This
function returns a correctly formed MGCP message and
releases the allocated memory. Figure 8 demonstrates the
usage of the encoder API functions.

An MGCP message may include in its body a SDP
description. In our implementation, we combined both
MGCP and SDP grammar description in the same input

/* write other parameters */

if(status) status = write_transactionID(transactionID);

if(status) status = MGCP_makeString(newMessage);

/* create new message */

...

status = MGCP_makeEncode(messageType);

/* structure initialisation */

Figure 8. Usage of the MGCP encoder API functions

file. The PCCTS tool differs from other familiar tools be-
cause it integrates the description of lexical and syntactic
analysis in one file, which is a very interesting feature,
but in the case of longer descriptions of grammar, the in-
put file becomes difficult to read and maintain.

The tool allows to write more than one grammar de-
scription in the same input file and supports mechanisms
for simple switching between different definitions. At the
beginning of the development cycle, we used these fea-
tures, but it quickly became obvious that this approach
has one major disadvantage: the executable file is very
long and memory usage dramatically increased.

The tool generates a top down LL(k) parser where k
represents the number of lookahead tokens. We set k = 1

for many reasons. One of them is that k > 1 results in
longer generated files and longer executable files.

5.1 Extended PCCTS Tool

For the implementation of the MGCP decoder and en-
coder we used the PCCTS tool written in C. As it uses
global variables, it does not support parallel execution. In
our work, we implemented the support for parallel exe-
cution by extension of the tool. The tool extension was a
hard and time-consuming task. The tool extension con-
sisted of: source code analysis, variable determination
and error recovery.

First, we analysed the source code and determined,
which variables were changed during the parsing of the
message with a Data Display Debugger (DDD). Next,
we exported all these variables in a new file with the
#export directive in C. The exported variables were
changed by adding one dimension. For example, variable
int var became array int var[]. Additionally, we
had to extend some functions and macros.

Our extension supports execution of a parser gener-
ated with k = 1 because we did not need to support
k > 1. Our solution is not universal for k = n, therefore
in the case of need to achieve k = 2, we would have to
extend some additional variables and functions. Figure 9
shows the architecture of the program during the parallel
execution. Each thread of the decoder and encoder has its
own data structure with decoded and encoded data.

Development of MGCP protocol stack for SI2000 digital switch node 7

. . .decoder
and

encoder

decoder
and

encoder

decoder
and

encoder

data datadata

API functions

thread 1 thread 2 thread n

Figure 9. Decoder and encoder data structures during the paral-
lel execution

5.2 MGCP OCX Control

The OLE Control Extension (OCX) control is an inde-
pendent program module which can be used by the de-
veloper of applications in a Windows environment. OCX
controls end with an “.ocx” extension. They represent
Microsoft’s second generation of control architecture, the
first being VBX controls written in Visual Basic.

The source code for the encoder and decoder for
MGCP protocol was written in C. This makes it easy to
port and compile in various operating systems including
Linux and Windows.

To support quick inclusion of the MGCP decoder and
encoder, we developed OCX control. The MGCP OCX
control can be easily used by developers of Windows ap-
plications. It can be used for prototyping, testing and
management applications which must support decoding
and encoding of MGCP messages.

The OCX control was implemented in Microsoft Vi-
sual C++ 6.0 SP5. We used the existing MGCP decoder
and encoder source code and additionally implemented
an OCX API interface. The size of the compiled MGCP
OCX control is 548 kB. Figure 10 shows the architecture
of the OCX control for the MGCP protocol.

OCX API functions

MGCP decoder and encoder

MGCP API functions

source code
decoder and encoder

Figure 10. MGCP OCX program structure

We developed an environment for testing the imple-
mentation of the MGCP protocol stack where we included
the MGCP OCX control. The program was developed

with Visual Basic 6.0 SP5. It supports a lot of function-
ality including a graphical editor for creating a MGCP
message.

6 Practical example

In this section we present how the MGCP stack encodes
a new Notify (Tab. 1) message. In Figure 11 com-
munication between the processes and the encoder is
shown. Process creation and communication is similar
to the opposite direction as shown in Figure 3. Process
MGCP AC receives a request for encoding a new mes-
sage. First, it sends a request for a peer process cre-
ation to the MGPC Mng process, which creates a new
instance of the MGCP PC process. Next, MGCP PC re-
ceives an SDL signal with message data from MGCP AC
and forwards it to MGPC Mng. It allocates and initial-
izates the encoder internal data structures with the ADT
operators. Then, it fills the structures with message ele-
ments. Finally, a new MGCP message is encoded by call-
ing the MGCP makeString API function. MGPC Mng
forwards the new MGCP message to the UDP Mng pro-
cess (Fig. 11). UDP Mng receives the SDL signal with
the message string (Notify message). It creates a new
UDP packet, which includes the MGCP message string
and sends it to the IP network.

7 Conclusion

In this article, a development of the MGCP decoder and
encoder for the SI2000 digital switch node is presented.
We developed the decoder and encoder in a Linux operat-
ing system. The program has been ported and compiled in
various operating systems including VxWorks and pSOS.
To support parallel execution of the decoder and encoder,
we extended the PCCTS tool. To support quick integra-
tion of the MGCP encoder and decoder, OCX control was
developed.

The decoder and encoder succefully run in the SI2000
digital switch node. The program is very stable. In the
future, it will be integrated in various telecommunication
devices including terminal adapters and telephones.

We will also extend the program with other specified
parameters and some of our own parameters. Architecture
of the software is modular and will therefore be easy to
maintain and upgrade.

8 References

[1] M. Arango, A. Dugan, I. Elliott, C. Huitema, S. Pickett,
“MGCP: Media Gateway Control Protocol, RFC 2705,
Network Working Group,” October 1999.

[2] D. Collins, Carrier Grade Voice Over IP. New York:
McGraw-Hill Companies, Inc., 2001.

[3] M. Handley, V. Jacobson, “SDP: Session Description Pro-
tocol, RFC 2327, Internet Draft,” 1998.

MGCP_PC

X: O
O: L/hd
K: 11

MGPC_Mng MGAC_MngENCODERUDP_Mng

returnStatus

returnStatus

MGCP_makeEncode("NTFY");

returnStatus

returnStatus

write_ResponseAck(11);

returnStatus

write_RequestIdentifier(0);

write_ObservedEvent("L","hd");

returnStatus

MGCP_makeString(&newMessage[0]);

returnStatus

ADT interface

UDP

packet

MGCP_write_TransactionID(9);

proc. creationRequest for

write_EndpointName("MG1@uni−mb.si");

NTFY 9 MG1@uni−mb.si MGCP 1.0

SDL structure with message data

SDL structure with message data

process creation

SDL signal

MGCP_AC

Figure 11. Example of encoding the Notify MGCP message

[4] ITU-T Recommendation Z.100, “SDL with applications
from protocol specification,” tech. rep., CCITT specifica-
tion and description language (SDL), 1993.

[5] J. Ellsberger, D. Hogrefe, A. Sarma, Formal Object-
oriented Language for Communicating Systems. Prentice
Hall Europe, 1997.

[6] B. Vlaovič, Z. Brezočnik, “Analog subscriber call genera-
tor,” Electrotehnical Review, vol. 69, no. 5, pp. 259–265,
2002.

[7] International Softswitch Consortium, MGCP Implementa-
tion Guide, April 2000.

[8] ANTLR home page,
http://www.antlr.org/.

[9] T. J. Parr, Language Translation Using PCCTS and C++.
Automata Publishing Company, 1993.

[10] T. J. Parr, R. W. Quong, “ANTLR: A Predicated-LL(k)
Parser Generator,” in Software - practice and experience,
vol. 25 of 7, 1995.

[11] T. J. Parr, H. G. Dietz, W. E. Cohen, PCCTS Reference
Manual, August 1991.

Aleksander Vreže (Student Member, IEEE) received
diploma in Computer Science from Faculty of Electrical Engi-
neering and Computer Science, University of Maribor, Slovenia,
in 2001. He is in his third year of a Ph.D. studies at the same

faculty and works as a researcher in the field of telecommuni-
cations. His main research interests cover voice communica-
tions over packet-based networks and parallel algorithms. His
current research includes parallel algorithms for binary decision
diagrams.

Boštjan Vlaovič (Student Member, IEEE) received diploma
in Electrical Engineering from Faculty of Electrical Engineer-
ing and Computer Science, University of Maribor, Slovenia, in
1999. He is a Ph.D. candidate at the same faculty and works as
a researcher in the field of telecommunications. His special in-
terests cover voice communications over packet-based networks
and their integration with traditional PSTN. His current research
interests are focused on formal verification, especially model
checking.

Zmago Brezočnik (Member, IEEE) received M.Sc. and Ph.D.
degrees from the University of Maribor, Faculty of Electrical
Engineering and Computer Science, in 1986 and 1992, respec-
tively. He is a full professor, head of Laboratory for Microcom-
puter Systems, and vice dean of education at the same faculty.
His main research areas are formal hardware and protocol verifi-
cation, especially symbolic model checking and binary decision
diagrams.

Tatjana Kapus (Member, IEEE) received M.Sc. and Ph.D.
degrees from the University of Maribor, Faculty of Electrical
Engineering and Computer Science, in 1991 and 1994, respec-
tively. She is currently an associate professor there. Her pri-
mary research interests are in the area of formalisms and tools
for specification and verification of reactive systems, such as,
for example, communication protocols.

