
SIPIS - SIP Info Service

Peter Vicman, Simon Nedok, Bo�tjan Vlaovič, Zmago Brezočnik
Faculty of Electrical Engineering and Computer Science

University of Maribor
Smetanova ulica 17, SI-2000 Maribor, Slovenia

{peter.vicman, simon.nedok, bostjan.vlaovic, brezocnik}@uni-mb.si

SIPIS - SIP Info Service

In this paper SIP Info Service (SIPIS) is presented. The
main purpose of this system is to deliver prerecorded
audio data (traffic news, weather reports, etc.) over the
Internet to the receiver using RTP (Real-time Transfer
Protocol) with the UDP/IP (User Datagram
Protocol/Internet Protocol) as its transport protocol.
For signaling purposes SIP (Session Initiation
Protocol) and SDP (Session Description Protocol) are
used. The system can be called by any SIP user agent.
The main stress in the development of this system was
on SIP and SDP. SIPIS consists of UDP server, SIP
and SDP parser and user agent for call control. UDP
server and client are used for transmission of UDP
packets carrying SIP and SDP messages. Parsers
dismember corresponding messages and SIPIS user
agent's job is to receive requests for audio information
and then play it to the calling user.

1. Introduction

SIPIS is used to deliver prerecorded audio messages
over the Internet to the user of the system. For call
control signaling the SIP protocol is used. A user
establishes session with his/her SIP user agent to the
SIP address of the system. It is composed from suffix,
which defines network address of the system, and
prefix, which defines wanted audio information. If the
media types are compatible at both sides, audio
connection is established and desired audio information
is played to the user. The session can be terminated by
SIPIS at the end of the recording or by the user at any
desired time.
During the implementation of the system, we have
focused on the SIP and SDP [1][2]. Therefore, we have
developed UDP server and client, SIP and SDP parser
and processes with Call Control and Protocol Control.
For media transmission slightly modified sfmike
modul was used which is part of the Speak Freely for
Unix [7] public domain program. This application
allows talking over a network with other Unix or
Windows workstations.
In the next section, we present short introduction of the
SIP protocol and its characteristics. Third section
describes basic characteristics of SDL (Specification
and Description Language). Next, hierarchical structure

of the SIPIS system is presented. Fifth section
describes tools and methods used for parser
development. In the sixth section, Agent Manager and
Agent State Machine are presented. Seventh section
shows some call examples with the system. We
conclude with final remarks and observations.

2. Session Initiation Protocol

SIP was developed under the IETF (Internet
Engineering Task Force). It is a signaling protocol used
for creating, modifying, and terminating multimedia
sessions. It can be used for point to point (unicast) or
multicast sessions. SIP is an alternative to the part of
H.323 bundle of protocols − call setup and signaling
from H.225. H.323 was developed by ITU
(International Telecommunications Union).
SIP defines procedures for negotiation of user
capabilities (supported protocols, codecs, �), supports
personal mobility, is independent of the lower layer
transport mechanism and can be easily extended or
updated with additional capabilities. With design
similar to HTTP (HyperText Transfer Protocol), it
enables usage of already known programming
techniques. SIP is application-layer signaling control
protocol. It can be used with UDP or TCP. With
unreliable transport protocols its own protocol control
mechanisms are used. SIP invitation carries SDP
session description. It allows participants to see each
other's capabilities and agree on a compatible subset of
media types. The multimedia content is transported
with the RTP. Multimedia sessions include
conferences, distance learning applications, Internet
telephony, messaging service and similar applications.
SIP can invite persons, �robots�, and services to the
unicast or multicast sessions.
For establishment and termination of multimedia
session the following steps are required:

• User location: determination of the end system
to be used for communication � IP address of
the user's terminal equipment;

• User capabilities: determination of the media
and media parameters to be used;

• User availability: determination of the
willingness of the called party to engage in
communications;

• Call setup: establishment of call parameters at
both called and calling party;

• Call handling: including transfer and
termination of calls.

SIP follows client/server architecture. The main
logical entity is user agent, which is an end point for
communication. It acts as user agent client and user
agent server for the duration of the call. SIP is request-
response protocol. User agent clients send requests and
user agent servers respond to that requests with
responses. Requests include method, which defines the
nature of the request and an address to which the
request should be send. The response includes status
code, which defines the type of the response.
A successful SIP invitation consists of two requests,
"INVITE" followed by "ACK". The "INVITE" request
invites the callee to join a session. After the callee has
agreed to participate in the session with a "200 OK"
response, the caller confirms reception by sending an
"ACK" request.
The "INVITE" request typically contains a session
description usually written in SDP format. It provides
the called party with enough information to join the
session. The callee receives information about media
types and formats that the caller is willing to use and
where it wishes the media data to be sent.
If the callee wishes to accept the call, he/she responds
to the invitation by returning a similar description
listing the media types it wishes to use.

3. SDL programming language

SDL is a programming language for the specification
and description of systems at conceptual level as well
as for detailed description of parts or a whole system. It
is mostly used for unambiguous formal specification
and description of the telecommunication systems. In
general, specifications may cover various aspects of a
system, such as hardware design, physical dimensions,
power consumption and so on. The SDL concentrates
on the behaviour of the system. Behaviour description
can be on abstract or implementation detailed level.
Specifications are concerned with the black box view
of the system. Little or no consideration is given to the
implementation issues. Descriptions, on the other hand,
reflect the structure of a planned or implemented
system. SDL does not differentiate between
specification and description. Therefore, SDL
specification may or may not reflect the structure of a
design based on the specification [3].
SDL was first defined in 1980 by CCITT (Comité
Consultatif International de Téléphonique et
Télégraphique) as recommendation Z.100. In the years
1984, 1988, 1992, 1996, and 1999 new versions of
SDL arose. In SDL-2000 better support for object
modeling is provided.

The strength of SDL lies in its recognition as an
international standard. It has the commitment and
support of ITU and ISO. This provides security for
investment and training, as it is ensured that SDL will
be maintained and supported in the future.

4. Hierarchical structure of SIPIS

Hierarchical structure of SIPIS is shown in Figure
1. UDP server/client and parser were written in C
programming language. UDP server receives incoming
messages and UDP client sends outgoing messages.
Parser�s job is to recognize received message, to
dismember it to logical parts, check the correctness of
the message and then send collection of basic elements
to the agent manager (AM). AM and agent state
machine (ASM) were written in SDL [3][6]. AM is a
static process − it exists from the beginning to the end
of the system run. It mediates received information
(protocol data) to the ASM. It is a a dynamic process −
each call has its own ASM process. Received protocol
data is forwarded from AM to appropriate ASM. If
received message initiates new call, AM creates a new
ASM. After ASM receives protocol data and executes
appropriate actions it prepares necessary data for the
response. Prepared SIP message is sent to the AM and
then forwarded to UDP client for delivery to the calling
user.

Agent
state machine

Agent manager

SIP/SDP
parser

UDP
server

RTP

UDP
client

Figure 1: Hierarchical structure of the SIPIS modules.

5. Parser

First operation after receiving the SIP message is to
recognize (parse) it. The received message is first split
in two parts, with SIP and SDP message, respectively.
Both parts are sent to the corresponding parser. Parser
code is produced with tools for parser generation [5].
Complete parser is composed from two parts: parser
and lexical scanner. Standard tools in Unix and Linux

environments are Flex and Bison [4]. Therefore, we
have chosen them for this purpose.

Grammar
rules

C compiler

Input text Parser
Parsed
text

Function
yyparse()
Function
yyparse()BISON

Function
yylex()

Figure 2: Using the Bison tool.

Bison is a general-purpose parser generator. It
receives grammar file with SIP or SDP message
description as its input. Grammar is described with
BNF (Bacus-Naur Form). The output of the program is
a C source file that parses the text described by the
grammar. The job of the parser is to check the grammar
of the message − it checks if received message has
correct sequence of basic symbols. Figure 2 shows how
the tool is used.

Grammar description in the input file is divided in
three sections. Sections are separated by a line with
two % signs:

�.. declarations �..
%%
�.. grammar rules �..
%%
�.. user subroutines �..

Declarations and user subroutines sections are optional.
Grammar rules section is the most important one. It
includes grammar and actions in C programming
language which are to be taken. Grammar in Bison is
composed from a number of rules. Every rule is started
with nonterminal symbol, followed by nonterminal
symbols, terminal symbols, and actions. Actions are
executed when parser recognizes a match for that
grammar rule. In our case the actions include code for
writing recognized symbol to the programming
structure containing parsed message (SIP and SDP
protocol data). Tokens are terminal symbols, returned
from scanner as shown in Figure 3. When parser needs
the next token it calls yylex scanner function.
Flex is a tool for generating scanners: programs which
recognize lexical patterns in text. Flex reads given
input file with a description of a scanner to generate.
The description is in the form of pairs of regular
expressions and C code, called rules. Scanner is
examining the input text, recognizing symbols and then
mediate them to the parser on its demand. The basic
task of scanner is recognizing patterns in text. When it
finds new pattern it executes appropriate action which
is written in C code. Usually, the action sends this
pattern to the parser.

Usage of Flex tool and structure of its input file is
similar to Bison's.

Lexical
rules

Input
text
Input
text

Terminal
symbols

ParserParser

FLEXFLEX

Grammar
rules

Parsed
text

Parsed
text

ScannerScanner

BISONBISON

Compiler CCompiler C

“parser.exe”“parser.exe”

Figure 3: Connection bettwen Bison and Flex.

6. Agent Manager and Agent State Machine

Agent manager manages agent state machines. As we
have already mentioned it is always present during the
system run. Beside managing ASMs, its job is to
analyse received messages and forward them to
appropriate ASM − it acts as a message multiplex.
Each call has its own agent state machine. ASM
includes behavioural logic of the SIPIS. It is written in
SDL language with Verilog SDL ObjectGeode version
1.0. ASM is responsible for Call Control, Protocol
Control and control of RTP module. When particular
ASM is not needed anymore, it kills itself. Figure 4
shows small part of the SDL language code.

Figure 4: Example of SDL code.

Next, we will describe actions taken during user's call
to the system.

7. Call example

When a new INVITE request is received, parser
recognizes and verifies received headers of the
message and forwards it to the AM. It checks headers
that identify a call and determines if message belongs
to existing call. If ASM for this call does not exist, AM
creates one, otherwise protocol data is forwarded to the

appropriate ASM. Each creation is recorded in the table
of existing ASM processes.
ASM�s task is to receive SIP and SDP protocol data,
execute specific actions and send response back to the
user of the system. From SDP description ASM
determines user's audio capabilities. If the requested
media is available, return confirmation is sent to the
calling user with "200 OK" response. After the agent
receives ACK request from the calling user it instructs
RTP module to create appropriate connection. In our
implementation only audio is used. RTP module starts
sending requested audio information after a slight
delay. The call flow between user and the SIPIS is
shown in Figures 5, 6, and 7.

Figure 5: Call flow between user and SIPIS.

Figure 6: User call termination.

Figure 7: SIPIS call termination.
The user can interrupt transmission with the "BYE"
request at any time of the call. SIPIS will terminate
transmission at the end of the audio message.
Termination of connection is confirmed with the "200
OK" response. When SIPIS gets "BYE" request, ASM
responds with "200 OK", waits for additional 40
seconds (due to possible retransmissions), notifies AM
and kills itself. ASM updates the table of existing ASM
processes.

Protocol Control is necessary due to unreliable
transport protocol (UDP). It is realized with
retransmissions as defined in SIP protocol.

8. Conclussion

In this paper a simple system for audio info services is
presented. This application enables users to listen
prerecorded audio information on his/her demand. It
can be used for various automatic voice message
systems like traffic, cinema and weather information. It
can be easily extended to provide additional
functionality. Our main objective was to test the
implementation of SIP and SDP parser and Protocol
Control logic. SIP protocol can be found in M-BONE,
Internet telephony, softswitch architecture of next
generation telecommunication networks, messaging
service in Windows XP and other applications. SIPIS is
still in its development phase. At the time of writing it
is not jet fully completed, but first tests have been
successful. Developed parser successfully recognizes
most test messages and tortured test messages used on
SIP interoperability test events.
We have tested SIPIS with applications (user agents)
from different companies and universities. We have
noticed that there are some interoperability problems.
In the future we are planning to support as many user
agents as possible.
SIPIS can be extended to support video distribution,
Short Message Service, personal answering machine,
and many other interesting applications. We are
planning to use it as our test bed for SIP and SDP
parser, Call Control and Protocol Control logic.

Literature

[1] M. Handley, H. Schulzrinne, E. Schooler and J.
Rosenberg: �SIP: Session Initiation Protocol�, IETF
RFC2543, May 29, 2001.
[2] M. Handley, V. Jacobson and C. Perkins: "SDP:
Session Description Protocol", IETF RFC 2327, 30
April 2001.
[3] F. Belina, D. Hogrefe and A. Sarma: SDL with
APPLICATIONS from PROTOCOL specification,
Prentice Hall, 1991.
[4] Brest Janez: Tool for automatic program analysis,
Diploma work, University of Maribor 1995. In
Slovene.
[5] Brian W. Kernighan, Dennis M. Ritchie: The "C"
programming language, Prentice Hall, 1988.
[6] ObjectGEODE Method Guidelines, Verilog, april
1996.
[7] Speak Freely for Unix 7.2,
http://www.fourmilab.ch/speakfree/unix/sfunix.html

