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University of Maribor, Faculty of EE & CS, Maribor, Slovenia
E-mail: {bostjan.vlaovic, aleksander.vreze, brezocnik, kapus}@uni-mb.si

Abstract— This paper presents our research in the do-
main of mechanical extraction of a model from an SDL
(Specification and Description Language) specification of
a system. We use formal verification tool Spin (Simple
Promela Interpreter) and Promela (Process Meta-Language)
language for the description of the model. With the model
checking technique the model’s accordance with the system
correctness requirements can be established with mathema-
tical accuracy. The model can be generated manually or
mechanically. If it is to be prepared manually, we will need
an expert with the detailed knowledge of the system and both
languages. The quality of the model is directly influenced by
the expert. The process is prone to the incorrect modelling
of the system’s properties. In this paper we present the
most critical parts of mechanical creation of the models
in Promela. Additionally, we present challenges, research
directions and some solutions for the automatic generation
of models from an SDL specification.

I. INTRODUCTION

SDL (Specification and Description Language) is
standardized by ITU (International Telecommunication
Union). It is based on ECFSM (Extended Communicating
Finite State Machines), but it uses graphical represen-
tation of flowcharts to show allowed transitions. In the
development cycle, SDL is employed for the formal speci-
fication and design of the system. It supports specification
and description of structural and behavioral aspects of the
application under development.

SDL may serve a number of purposes, from reasoning
about systems at an abstract level to the automatic deriva-
tion of implementations. Nowadays, several commercial
and academic tools are available that support the deve-
lopment of systems with SDL. Tool support comprises
graphical editing, validation, verification, simulation, ani-
mation, code generation, and testing.

For successful formal verification of an SDL specifica-
tion a model has to be prepared for the chosen verification
program. In this paper we use Spin (Simple Promela In-
terpreter) with its input language Promela (Process Meta-
Language). Promela adopts a strong formal basis establi-
shed, like SDL, in ECFSM theory. The similar basis of
SDL and Promela makes the translation between different
representations feasible. Similar to SDL, Promela allows
dynamic creation of concurrent processes. The description
of a concurrent system consists of one or more user-
defined process templates or proctype definitions and at
least one process instantiation. Process templates are used
to define a finite automata of the system. Computation of
asynchronous interleaving product of the automata gives

global behaviour of the system (state-space of the system,
reachability graph).

Spin is a tool for analyzing logical correctness of
concurrent systems, specifically of data communications
protocols. Its first version under the name Pan appeared in
1980. Currently, in its 4th version, it is a mature project
with a lot of users and contributors. Given the system
model in Promela, Spin can perform random, interactive,
or guided simulation of the system executions. Further,
it can generate a verifier in C code which performs
online verification of the system’s correctness properties
(safety properties, liveness properties, and general tem-
poral properties). It checks for the absence of deadlocks,
unspecified receptions, unexecutable code, and it can find
non-progress execution cycles. It supports efficient model
checking, invariant assertions, and temporal properties
expressed in a subset of LTL (Linear Temporal Logic).
Checking of system properties requires the use of probes
in the model. Probes provide us with an insight to the
model execution and are mostly present as assertions on
special variables.

This paper is organized as follows. Section 2 defines the
problem. In Section 3, specification of the V.76 protocol
in SDL is presented. Section 4 presents the mechanical
generation of models. We discuss the modelling of SDL
data types, processes, variables, communication, and ti-
mers. We conclude with a discussion and directions for
further research.

II. PROBLEM DEFINITION

A model of an SDL specification can be generated
manually or mechanically. If it is to be prepared manually,
we will need an expert with the detailed knowledge of
the system and the language. The quality of the model is
directly influenced by the expert. The process is prone
to the incorrect modelling of the system’s properties.
Therefore, automatic generation of models from the SDL
specification would help with the introduction of formal
methods to the development cycle. Different approaches
to generation of models from SDL specifications are
described in [1], [2], [3], [4], [5], [6], [7], [8].

In this paper specification of the V.76 protocol from [9]
will be used as an example. Using this SDL specification
we will try to show the steps needed to automatically ge-
nerate a valid verification model and present an overview
of research results from [10] for the solution of some
issues.



system  V76test

SIGNAL
  /* V.76 primitives L-ESTABLISH etc.*/
  L_EstabReq(DLCident),  
  L_EstabInd(DLCident),
  L_EstabResp,
  L_EstabConf(DLCident),
  L_SetparmReq,
  L_SetparmInd,
  L_SetparmResp,
  L_SetparmConf,
  L_ReleaseReq(DLCident),
  L_ReleaseInd(DLCident),
  L_DataReq(DLCident, Integer),
  L_DataInd(DLCident, Integer);

SIGNAL
  /* V.76 commands and responses. */
  V76frame(V76paramTyp);

/* Service User to DLC: */
SIGNALLIST  su2dlc=
  L_EstabReq,
  L_EstabResp,
  L_SetparmReq,
  L_SetparmResp,
  L_ReleaseReq,
  L_DataReq;

/* DLC to Service User: */
SIGNALLIST  dlc2su=  
  L_EstabInd,
  L_EstabConf,
  L_SetparmInd,
  L_SetparmConf,
  L_ReleaseInd,
  L_DataInd;

NEWTYPE  V76paramTyp
  STRUCT
    presen T_CHOICE;
    I  Iframe;
    SABME  SABMEframe;
    DM  DMframe;
    DISC  DISCframe;
    UA  UAframe;
    XIDcmd  XIDframe;
    XIDresp  XIDframe;
ENDNEWTYPE ;

NEWTYPE  T_CHOICE
 LITERALS  I, SABME, DM, DISC, 
                   UA, XIDcmd,XIDresp
ENDNEWTYPE ;

SYNONYM  maxDLC Integer = 1;

SYNTYPE  XIDframe = Integer
ENDSYNTYPE ;

/* DLC Identifier: */
SYNTYPE  DLCident =
  Integer CONSTANTS  0 : maxDLC
ENDSYNTYPE ;

NEWTYPE  Iframe
  STRUCT
    DLCi DLCident;
    data Integer;
    CRC Integer;
ENDNEWTYPE ;

NEWTYPE  SABMEframe
  STRUCT
    DLCi  DLCident;
ENDNEWTYPE ;

NEWTYPE  DMframe
  STRUCT
    DLCi  DLCident;
ENDNEWTYPE ;

NEWTYPE  DISCframe
  STRUCT
    DLCi  DLCident;
ENDNEWTYPE ;

NEWTYPE  UAframe
  STRUCT
    DLCi  DLCident;
ENDNEWTYPE ;

/* Simplified V76 model. */

DLCaSU
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Fig. 1. Graphical description of V.76 protocol and its environment

III. SPECIFICATION OF V.76 PROTOCOL

The system used in [9] is a simplified version of the
protocol described in [11]. ITU-T V.76 Recommendation
describes a protocol to establish Data Link Connections
(DLCs) between two modems and to transfer data over
these connections (Fig. 3). The V.76 SDL specification
and associated files can be downloaded in ObjectGeode
and Tau SDL formats from the Internet [9]. The speci-
fication from [9] includes one ASN.1 (Abstract Syntax
Notation One) data type definition. We decided to replace
it with SDL96-compliant definition of data types to avoid
the ASN.1 extensions of the Z.100 standard (Fig. 1).

Fig. 3 shows communication between two service
users. Several connections can exist in parallel: SUA may
establish DLC number 0 to transmit voice and DLC num-
ber 1 to transmit data to or from SUB. A request on one
side is generally followed by an indication on the other
side of the connection. Fig. 2 shows four stages of the
expected connection. In the first stage SUs can optionally
perform exchange identification procedures. Next, establi-
shment of a data link connection is expected. On receipt
of an L-ESTABLISH request primitive (L EstabReq)
from its SU, the V.76 shall attempt to establish the DLC.
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Fig. 3. Communication between SUA and SUB through V.76 protocol

The DLC entity transmits a Set Asynchronous Balan-
ced Mode Extended (SABME) frame, the retransmission
counter is reset, and timer T320 [11] is started [9].
If a peer DLC entity, based on the response from its
SU (L EstabResp), is able to establish the DLC, it
shall respond with Unnumbered Acknowledge (UA) and
enter the connected state. Otherwise it should respond



L DataReq
I

L ReleaseReq

L ReleaseInd

DISC

L EstabReq

L EstabConf

SABME

UA

L SetparmReq

L SetparmConf

XIDcmd

XIDresp

L EstabInd

L EstabResp

L SetparmInd

L SetparmResp

L DataInd
L ReleaseInd

UA

DLCa DLCb DLCa DLCb

DLCbDLCaDLCbDLCa

Data transfer

DLC establishmentExchange of identification

DLC release

Fig. 2. Four stages of V.76 protocol connection between SUs

with Disconnect Mode (DM). Once in the connected
state, information transfer may begin. DLC receives data
from SU with the use of an L-DATA request primitive
(L DataReq). Data are transmitted in an I frame. Struc-
ture of the I frame is shown in Fig. 1 with the definition of
data type Iframe. Communication is terminated with the
L-RELEASE request primitive (L ReleaseReq) from
any SU. Description of the protocol in greater detail is
outside the scope of this paper and can be found in [9],
[11].

Since verification with Spin requires a complete sy-
stem, we included environment processes SUa and SUb,
which can receive and send all signals that are defined
at the channels DLCaSU and DLCbSU. Fig. 1 shows a
graphical description of the V76test SDL system that
is used in this paper as a reference SDL specification.
Blocks DLCa and DLCb describe the V.76 protocol and
are identical. Each block consists of two processes—
dispatch and DLC (Fig. 4). Process dispatch creates
new DLCs on request (L EstabReq) from SU or refuses
new connections with L ReleaseInd. Each DLC is
managed by its own DLC process. Unreliable transfer of
frames is modelled in the dataLink block (Fig. 5). All
choices that were in [9] specified as an informal text
in processes AtoB and BtoA were replaced with the
nondeterministic decision (Fig. 6). No other changes to
the original system specification were made.

IV. AUTOMATIC GENERATION OF MODELS

The SDL specification of the V.76 protocol includes
most of the elements that are used in real-life specificati-

block DLCa
SIGNAL
   DLCstopped(DLCident);
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Fig. 4. Graphical description of DLCa process

ons in the industry:

• SDL data types and expressions,
• dynamic process creation,
• priority signal,
• implicit transition,
• spontaneous transition,
• save construct,
• priority input,
• enabling condition,



block dataLink

/* This block
    models  a 
    simplified 
    data-link
     layer. */

DLCaDL DLCbDL

fromA

V76frame 

toB
V76frame 

fromB

V76frame 

toA
V76frame 

AtoB BtoA

Fig. 5. Block dataLink

process AtoB
/* Retransmission to peer
   of received signals,
   plus introducing faults. */

DCL
  V76par V76paramTyp;

ready

ready

V76frame(V76par)

ANY

V76frame(V76par)
VIA toB

-

Fig. 6. Process AtoB

• asterisk input,
• direct (PId) and indirect addressing (name of the

process, name of the signal route),
• path limitations introduced by the via statement,
• asterisk state,
• timers and
• procedures.

Most of them can not be properly modelled with
existing approaches. We believe that their support in
the mechanical generation of models is crucial for the
recognition of formal verification as an equally important
step of the product development activities in the industry.

A. Data Types

Data in SDL are based on the concept of ADT (Abstract
Data Type). ASN.1 can also be used as a data type
notation in combination with SDL, but it is not included in
our research activities. An ADT describes the functional
properties of data objects. It defines the result of operati-
ons on data objects without constraining how this result is
obtained. The latter is up to the implementation of a data
object [12]. Predefined data sorts and data generators are
defined in Annex D to the recommendation Z.100 [13].

Our algorithms for modelling the predefined data types
and operators are described in [10]. We define algorithms
for automatic modelling of INTEGER, BOOLEAN, PId,

#define NUL 0
#define SOH 1

.

.

.
#define ZERO 48
#define ONE 49

.

.

.
#define ASTERISK 42
#define PLUS 49

.

.

.
#define CHAR_A 65
#define CHAR_B 65

Fig. 7. Some definitions of CHARACTER data type literals

NATURAL, CHARACTER, CHARSTRING, REAL, TIME,
and DURATION data types. All rational numbers are cur-
rently modelled with integers. Their accurate modelling
is part of our current research activities [14].

For the CHARACTER data type we use the Promela
#define directive for all literals that are defined in [13]
(Fig. 7). Data type CHARSTRING is by default limited to
32 characters. Fig. 8 shows modelling of both data type
and strcpy operator with the use of the inline statement.

typedef pt character {unsigned char : 7 = 0}

#define pcv charstring max 33

typedef pt charstring {byte char[pcv charstring max]}

inline strcpy(pfv stringB,pfv stringA){
d step{

pfv tmp=1;
do

:: ((pfv tmp<=pcv charstring max) &&
pfv stringA.char[pfv tmp]!=NUL) −>
pfv stringB.char[pfv tmp]=
pfv stringA.char[pfv tmp];pfv tmp++;

:: else −> break
od

}
}

Fig. 8. Modelling of CHARSTRING data type and strcpy operator

Fig. 9 shows the model of the T CHOICE and Iframe
data types defined in the V76test system (Fig. 1). Du-
ring the static analysis of the system we check the range
of each data type and try to optimize its representation in
the Promela model. Explicitly declared literals are defined
as constant values. Such representation allows redefinition
of some predefined values such as 1, 2, . . .

Each SDL ADT can contain one or more operators.
Tools used in the industry provide interfaces and skeletons
for the implementation of the ADT operators in C pro-
gramming language. External files can include complex
functions and define new data structures and header files.
One of the reasons we decided to use Spin is its support
for embedded C code in a model ([15], [16]). Every
SDL specification from our industry projects uses such
operators.



typedef T_CHOICE {byte val}

#define T_CHOICE__I 1
#define T_CHOICE__SABME 2
#define T_CHOICE__DM 3
#define T_CHOICE__DISC 4
#define T_CHOICE__UA 5
#define T_CHOICE__XIDcmd 6
#define T_CHOICE__XIDresp 7
#define T_CHOICE__undefined__value 8

typedef Iframe {
DLCident DLCi;
int data;
int CRC

}

typedef DLCident {byte val}

Fig. 9. Some definitions of data types from V76test system

Mechanical generation of models with support for the
external operators presents a big challenge. Our current
approach is divided into two phases. First, exhaustive ana-
lysis of the SDL specification and C code is performed.
This phase involves analysis of data structures, global
variables, function calls, and all external files which are
included through the ADT operator mechanism. Next, we
build a model of the specification [14]. First results of our
research are promising.

B. Processes and Variables

SDL processes are communicating extended finite-state
machines and can be modelled with Promela proctypes.
Algorithms for the automatic generation of SDL process
models with the use of Promela’s proctype definitions
should support dynamic process creation, expressions in
parameters, process communication and their termination.

SDL processes are either created at system initialisation
time or later in the lifetime of the system by other
processes in the same block. An arbitrary number of
instances of a process can be active at the same time.
Each process instance can be in a different state and
therefore react differently to a signal at a given time. The
number of processes may change during the lifetime of
the system. The specification defines the initial and the
maximum number of processes.

When a process instance is created, all variables of the
process are also created—including predefined variables
parent, offspring, and self. They are set to an
initial value if specified. All variables which do not
have an initial value remain undefined until they are first
assigned a value in a transition [12]. Promela uses a
different approach and always initializes all variables to
some explicit or implicit predefined values. Special care
has to be taken during the generation of the model to
explicitly model the undefined value.

In a mechanically generated model, which is based on
algorithms presented in [10], initial processes are created
by the special process init. Fig. 10 shows part of
the generated Promela model. The creation of the AtoB
process demonstrates the interdependence of various parts
of the model. The complexity of the model is greatly
influenced by the explicit modelling of semantics of the

init{
pt__pid offspring;
atomic{

if
:: table__dataLink__AtoB__free <

table__dataLink__AtoB__max ->
offspring = run
dataLink__AtoB(chan__dataLink__AtoB[\

table__dataLink__AtoB__free],_pid);
table_pid_channum[offspring] =\
chan__dataLink__AtoB[\

table__dataLink__AtoB__free];
table_pid_channame[offspring] =\

chan__dataLink__AtoB__select +
table__dataLink__AtoB__free;
table_channame_channum[\

chan__dataLink__AtoB__select+\
table__dataLink__AtoB__free] =

chan__dataLink__AtoB[\
table__dataLink__AtoB__free];

if
::(offspring==0) ->
pv__runtime_error = true;

::(offspring!=0) ->
table__dataLink__AtoB__free++;

fi;
:: else -> pv__runtime_error = true;
fi;

.

.

.
}

}

Fig. 10. Part of the generated init process

SDL. Detailed explanation of all elements in Fig. 10 and
presentation of the process modelling, even for the simple
process AtoB, is unfortunately outside the scope of this
paper.

The biggest remaining challenge for complete model-
ling of the dynamic process creation is a different inter-
pretation of the process termination in SDL and Promela.
An SDL process terminates at the end of its execution.
At that time all associated resources are released—most
notably PId. Promela distinguishes between the end of
the process execution and its termination. Its resources
are released at its termination, which can occur only when
all younger processes have terminated first. The maximum
number of simultaneously running processes is 255. Since
each active process is guaranteed to have a unique PId
within the system, it can be reused only after the process
terminates. This difference creates a problem when an
SDL specification is modelled where processes do not
terminate in the reverse order of their creation. This issue
requires further research activities.

C. Communication

Each SDL process has an associated input queue.
In [10] each proctype has an associated channel. The
number of defined channels depends on the number of
expected process instances during the system execution.
If the initial and maximum number of processes is not
explicitly specified, the mechanically generated model
which is based on the algorithms presented in [10] is not
in accordance with [17]. Both values are set to one, while
recommendation Z.100 in this case defines the maximum



number to be unlimited.
The SDL static structure specifies which processes can

communicate with each other. The number and type of
channel parameters are acquired by static analysis of
the specification. To avoid state space explosion, each
channel parameter should be used by more than one
signal. Each associated channel has potentially different
set of parameters. If a process can send the same signal to
two different processes, the send statement potentially has
to be modelled differently—based on the concrete model
of the receiver’s associated channel.

Most of the specifications from the industry we know
of use all of the available SDL communication constructs.
The most critical constructs were itemized at the begin-
ning of this section. For their simultaneous support a
special skeleton for the process body and monitoring of
the input queue had to be developed [10]. Support for the
save construct, priority signal, and all forms of addressing
is especially important.

D. Timers

In standard Promela and Spin, timing properties of the
specifications can not be expressed in a quantitative man-
ner. Consequently, we actually verify the specifications
with DT Spin ([18], [19]), an extension of the Spin model-
checker with discrete time which has been developed
within the Vires project. In [10], modelling of timers is
extended with support for timer parameters. Expiration of
a timer is modelled in accordance with [17] as a reception
of a signal.

V. CONCLUSION

The results from [10] are implemented in the sdl2pml
tool. It mechanically generates Promela models from
specifications in SDL. During the development of the tool
we used the specification of the V.76 protocol as one of
the test specifications. The SDL specification of the V.76
protocol consists of 1304 lines, while the model consists
of between 4627 and 5034 lines of code. The final length
of the model depends on the number of probes which are
mechanically included in the model for the verification of
various properties of the system.

Our intention was to give a reader an impression of
the complexity of the specification and present the most
critical parts of the mechanical creation of the model
in Promela. A detailed description of algorithms and
implementation details are outside the scope of this paper.
During the verification of the mechanically generated
model all errors that are presented in [9] were found.

Next, we want to test the sdl2pml on a real-life
industrial specification. Our future research will be based
on this experience. We believe that there are still a lot
of unresolved issues. Our main motivation is the promo-
tion and inclusion of formal verification as an equally
important part of the development process at our industrial
partners.
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