
Elektrotehniški vestnik 72(1): 14–21, 2005
Electrotechnical Review, Ljubljana, Slovenija

Verification of an SDL Specification — a Case Study

Boštjan Vlaovič, Aleksander Vreže, Zmago Brezočnik, Tatjana Kapus
University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova ulica 17, 2000 Maribor, Slovenia
e-mail: fbostjan.vlaovic, aleksander.vreze, brezocnik, kapusg@uni-mb.si

Abstract. This paper presents practical experience gained by an attempt to mechanically extract a model of the
Inres service with the go-back-n extension and verify it with the use of simulation and formal verification based on
the model checking technique. The service specification is written in the Specification and Description Language
(SDL). The model is obtained mechanically with the application of the sdl2if and if2pml tools.
Transformation to discrete-time Promela is followed by simulation and an example of formal verification of a
property described in Linear Temporal Logic (LTL) with the Spin model checker. Description of each step of the
process is followed with the noticed shortcomings of the procedure, limitations of the tools and discovered faults
in the specification of the service. We conclude with a discussion of further research activities and some results
from the domain of mechanical extraction of models from SDL system specifications.

Key words: Simulation, Formal Verification, Model Checking, SDL, Spin, Promela, IF

Primer verifikacije specifikacije v jeziku SDL

Povzetek. Prispevek predstavlja praktične izkušnje, ki smo jih
pridobili ob poskusu avtomatske tvorbe modela storitve Inres
s protokolom “vrni se za N” ter preverjanjem pravilnosti de-
lovanja z uporabo simulacije in formalne verifikacije na osnovi
tehnike preverjanja modelov. Specifikacija sistema je zapisana
v opisnem jeziku SDL. Model sistema je pridobljen avtomatsko
z uporabo programskih orodij sdl2if in if2pml. Pridobljeni
model je opisan v jeziku Promela z razširitvijo za podporo
diskretnega časa. Tvorbi modela sistema sledi opis simulacije
in primer formalne verifikacije lastnosti, ki je zapisana z line-
arno temporalno logiko. Uporabljeno je orodje za preverjanje
modelov Spin z razširitvijo za podporo diskretnega časa. Ob
opisu vsakega koraka so izpostavljene opažene pomanjkljivosti
postopka, omejitve orodij ter odkrite napake v specifikaciji sto-
ritve. Zaključimo s predstavitvijo nadaljnjega raziskovalnega
dela in nekaterimi rezultati s področja avtomatske tvorbe mode-
lov iz specifikacij sistemov v jeziku SDL.

Ključne besede: simulacija, formalna verifikacija, prever-
janje modelov, SDL, Spin, Promela, IF

1 Introduction

The main objective during the development of computer
systems is to reduce reliance on human intuition and judg-
ment in evaluating arguments. Formal methods refer to
the use of logic and discrete mathematics during the de-
velopment process. They are not a guarantee of a super-
ior product. Realistic expectations are a function of the
designated role and extent of formal methods use and of
project resources allocated to the formal methods activity.

Received 30 January 2004
Accepted 14 February 2005

Skillful application of formal methods can detect faults
that would be hard to discover with the test methods that
are still prevailing in most projects.

In this paper, only a small sub-field of the general area
that is covered by formal methods will be used: the ap-
plication of automated verification techniques referred to
as model checking. In this approach, specifications are
expressed in a propositional temporal logic, and design
under consideration is modelled as a state-transition sys-
tem. An efficient search procedure is used to determine if
the specification is true for the transition system. In other
words, the transition system is checked to see whether it
is a model of the specification [1].

This paper presents a practical experience gained by
an attempt to mechanically apply model checking method
to the specification of the Inres service with the go-back-
n extension. It was written in SDL (Specification and
Description Language), converted to intermediate format
(IF), which was converted to Promela (Protocol/Process
Meta Language), and checked by simulation and formal
verification.

This paper is organized as follows. Section 2 defines
the problem. In section 3, introduction to model check-
ing is presented. Section 4 describes specification of the
protocol in SDL. Next, the model extraction technique is
shown. Section 6 discusses the simulation and verifica-
tion of the extracted model with the Spin model checking
tool. Section 7 summarises findings of the case study. We
conclude with a discussion of further research activities



2 Vlaovič, Vreže, Brezočnik, Kapus

and some results from the domain of mechanical extrac-
tion of models from SDL system specifications.

2 Problem Definition

The main objective of the research was to test current
state-of-the-art tools and methods for mechanical formal
verification of telecommunication protocols developed in
SDL. In order to eliminate knowledge of the specification
in advance, we decided to verify a specification which has
been written by a third party.

The optimal solution would consist of black box ap-
proach based on the system specification and strong pro-
hibition of any alteration of the original SDL code. As we
will present in the paper, this was not possible due to the
limitations of the tools and particularities of the specific-
ation. Additional research activities which would provide
a better solution will be discussed at the end of each sec-
tion.

3 Model Checking

Traditional model checking technique developed by Ed
Clarke and Joseph Sifakis is a two-pass verification pro-
cess. In the first pass, the reachable state space of a con-
current system is computed and the essential features of it
are encoded into a data-structure that is stored in a com-
puter memory. In the second pass, the validity of a cor-
rectness requirement, formalized in a temporal logic for-
mula, is verified for the given global state space structure
[1].

The other approach is described as on-the-fly verific-
ation. It has its roots in the work of Colin West. The
main objective of this method is to prove every property
of interest for a concurrent system in a single pass of the
state space exploration algorithm. To our knowledge, the
first efficient implementation of such a system was Spin
by Gerard Holzmann [2].

Model checking method enjoys two remarkable ad-
vantages. First, it is fully automatic, and its application
requires no user supervision or expertise in mathematical
disciplines such as logic or theorem proving. Second,
when the design fails to satisfy a desired property, the
process of model checking can produce a counterexample
that demonstrates a behaviour which falsifies the property.
This fault trace provides insight to understanding the real
reason for the failure [1].

The main disadvantage of model checking is state ex-
plosion which can occur if the system being verified has
many components that can make transitions in parallel.
The number of global system states may grow exponen-
tially with the number of processes. In the case of asyn-
chronous protocols, it is possible to decrease the size of
the state space by the use of techniques such as partial
order reduction.

4 Specification

The object of our study is an SDL specification of the
Inres service. A similar system was used in [3] as an
introduction to the OSI (Open Systems Interconnection)
concepts and system description with SDL. Specification
under study is described in [4]. It extends original ser-
vice with the go-back-n functionality. The specification
was written in Telelogic’s ObjectGEODE, which is used
in our research work.

4.1 SDL

SDL is standardized by ITU (International Telecommu-
nication Union). It is based on Extended Communicating
Finite State Machines (ECFSM), but it uses graphical rep-
resentation of flowcharts to show allowed transitions. In
the development cycle, SDL is employed for the formal
specification and design of the system. It supports spe-
cification and description of structural and behavioral as-
pects of the application under development.

SDL may serve a number of purposes, from reasoning
about systems at an abstract level to the automatic deriva-
tion of implementations. Nowadays, several commercial
and academic tools are available that support the deve-
lopment of systems with SDL. Tool support comprises
graphical editing, validation, verification, simulation, ani-
mation, code generation, and testing.

4.2 Inres service

The Inres service is offered to the user in the environ-
ment (Figure 1). Users of the system communicate with
the Inres protocol. It is connection-oriented. The user
who wishes to communicate with another user via the
service must first initiate a connection before exchanging
data (Figure 2). For simplification purposes, the service is
not symmetrical. The user A can initiate a connection and
later send data. User B can accept the connection or reject
it. After acceptance it can receive data from the initiating
user until it decides to terminate the connection.

The hierarchic structure of the SDL system and its en-
vironment is shown in Figure 1. It is composed of three
layers. The Inres service encompasses layer 2 of the sys-
tem within blocks Ini Station and Res Station.
Due to the difference between interfaces of the first and
the third layer recoding of the messages is required. Cod-
ing and decoding is performed by processes Coder Ini
and Coder Resp. The core functionality of the Inres
service is described in the processes Initiator and
Responder. The physical layer is described within the
Medium block. Processes MSAP Man1 and MSAP Man2
offer lossy transmission of messages.

The original specification of the Inres protocol in-
cluded simple repetition of the lost messages in layer 2.



Verification of an SDL Specification — a Case Study 3

Coder_Ini

(CC,AK,DR ((CC,AK,DR
 CR,DT) CR,DT)

 MDATind)
(MDATreq, (MDATreq,

 MDATind)

(MDAT)

Medium

Ini_Station Res_Station

Environment

 ICONresp,IDISreq)
(ICONind,IDATind,(ICONreq,IDATreq,

 ICONconf,IDISind)

Env_ini Env_res

Initiator Responder

Coder_Resp

MSAP_Man1 MSAP_Man2

Figure 1. SDL system description

After four unsuccessful attempts connection was termin-
ated. The presented SDL description supplements this
simple functionality with the go-back-n protocol, but only
for the transmission of the IDATreq signal which car-
ries user’s data frame. It is specified in the processes
Initiator and Responder. Window length of the
go-back-n protocol is three.

IDATreq(DATA) IDATind(No,DATA)

ICONreq

ICONconf

ICONind

ICONres

IDISind IDISreq

IDATind(No,DATA)

Env_Ini

DR(No,DATA)

CR

CC

AK

AK

DR

DR(No,DATA)

Env_ResResponderInitiator

Figure 2. Message flow of the Inres protocol.

5 Model Extraction

Conversion of the system design to a formalism accep-
ted by the model checking tool is of crucial importance.
A model can be obtained from the system specification
or implementation. For the purpose of this article, we
are interested only in the former. The best results can
be obtained by the automatic model extraction – given
that a transformation method does not change the system
design.

Usually, a model of the system is extracted by an ex-
pert for the formal verification tool that is used. This pro-
cedure is heavily dependent on the verificator and his or

her skills. We tried to mechanically extract the model of
the specification with two tools: sdl2if and if2pml.
The first tool converts an SDL description of the system
to the intermediate format. Next, conversion to Promela
is performed by the if2pml tool.

5.1 Intermediate Format

IF can be considered as a common representation model
for other existing languages such as Promela or for a
combination of languages adopting different description
styles.

sdl2if is a translator of SDL specifications into the
IF intermediate representation. It relies on an API of
the ObjectGEODE (Telelogic) and is a product of VER-
IMAG (public research lab) [5].

The translation pointed out the inexactness of the spe-
cification. In SDL, each process can have initial and max-
imal number of instances. If no explicit limits are defined,
it is implicitly assumed that the initial number has a value
1 and the maximal number is unbounded. Therefore, the
translation would not be rigorous if it implicitly assumed
other values. In our example, the correct assumption for
both values would be 1, in some other cases it could be
something else. The translator writes a warning to the log
file, but handles this inexactness to our favor. In spite of
that, we would suggest that this warning is also printed to
the standard output. Before the actual translation Object-
GEODE’s SDL checker is used to verify compliance of
the current SDL system with the selected version of the
standard. Its output is printed to the standard output. It
can be misleading. A process declaration without explicit
limits has completely valid SDL syntax. Therefore, the
SDL checker does not produce any errors or warnings.

According to [5], sdl2if should translate each local
variable in an SDL process to a local variable of the
corresponding IF process. SDL predefined data types
Boolean, Integer, Real, Natural, PId, Time, and Dura-
tion have corresponding data types in IF. Data type Char-
acter is translated into an IF user defined type range
[1::256]. We noticed that variables of the predefined
type charstring were not translated. A confirma-
tion of our “discovery” was found in [6]. Data type
charstring covers characters of any length enclosed
within apostrophes, e.g. “Hello World”. Currently it is
translated to an abstract data type. The treated SDL spe-
cification included only one such variable definition and
it could be easily changed.

An acknowledged limitation of the sdl2if is its lack
of full support for the enabling condition. It is only trans-
lated if the condition does not involve parameters of the
input signal.



4 Vlaovič, Vreže, Brezočnik, Kapus

5.2 Promela

Protocol/Process Meta Language is a modelling language
which allows dynamic creation of concurrent processes.
It is used by the Spin model checker. The description of
a concurrent system consists of one or more user-defined
process templates or proctype definitions and at least one
process instantiation.

Process templates are used to define a finite automaton
of the system. Next, computation of asynchronous inter-
leaving product of automata gives global behaviour of the
system (state-space of the system, reachability graph). It
describes a finite systems, which implies:

� no unbounded data,
� no unbounded channels,
� no unbounded processes,
� no unbounded process creation.

Real-time properties of the specifications cannot be
expressed in standard Promela and Spin in a quantitative
manner. Consequently, the IF specifications are actually
translated into DT Promela, an extension of Promela, with
discrete-time features (timers and operations on timers)
[7].

The obtained DT Promela models can be simulated
and verified with DT Spin, an extension of the Spin
model-checker with discrete time that has been developed
within the Vires project [8]. It is currently based on ver-
sion 3.3.10 of Spin from the year 2000. It seems that the
project is frozen. Current version of the mainstream ver-
sion of Spin is 4.0.6.

Next, system description was translated to Promela by
if2pml. Its acknowledged limitations are [9]:

� save operations are not implemented,
� enabling conditions are not translated.

During our research we ran into additional limitations.
Structures are not supported in assignments. Promela
does support structures, but each element of the structure
has to be individually assigned a value. It is not possible
to assign values to all of the elements in one “structure
assignment”. It could be realized with the introduction of
a special channel [10], but if2pml does not handle this
requirement correctly. Translated SDL specifications are
therefore invalid if they use structures in assignments. We
solved this problem with the expansion of the structures.
Extension of Promela with support for the transparent use
of structures would greatly simplify the process of trans-
formation. Experiences from the industrial projects show
that most of the communication in SDL is performed via
signals which include variables of the type struct.

During the modification of the environment model we
discovered an improper transformation of the SDL con-
struct input when an asterisk (“*”) is used as a sig-
nal descriptor. It is interpreted in the same way as any

descriptor for a decision construct, which is not in ac-
cordance with the SDL standard. Asterisk implies that all
signals that have not been specified explicitly for that state
in an input or save construct are accepted. Next, some
minor problems concerning correct timer and reset
statements were found and corrected.

6 Simulation and Verification

Successful translation was followed by the simulation and
verification of the system behaviour with the Spin model
checker.

6.1 Spin

Spin is a tool for analyzing logical correctness of concur-
rent systems, specifically of data communication proto-
cols [11]. Its first version under the name Pan appeared in
1980. Currently, in its 4th version, it is a mature project
with a lot of users and contributors.

Spin’s wide support from the research community is
due to its free availability. It supports efficient model
checking, invariant assertions, and temporal properties
expressed in a subset of Linear Temporal Logic (LTL).
Promela adopts strong formal basis established, like SDL,
in ECFSM theory. The similar basis of SDL and Pro-
mela makes the translation between different representa-
tions feasible. Our future research activities will focus on
direct translation between the two.

Given the model of the system specified in Promela,
Spin can perform random, interactive, or guided simula-
tion of the system executions. Further, it can generate a
C program which performs online verification of the sys-
tem’s correctness properties:

� safety properties,
� liveness properties,
� general temporal properties.

It checks for the absence of deadlocks, unspecified re-
ceptions, unexecutable code, and it can find non-progress
execution cycles.

6.2 Model of the Environment

Simulation and verification of protocols require model-
ling of the environment. The environment is often unpre-
dictable, and its effective modelling requires the use of
non-deterministic choices. Based on the assumption that a
developer has better knowledge of SDL than Promela, the
environment was described in SDL. The environment had
to satisfy the requirements for the simulation and verific-
ation of safety and liveness properties. To prove liveness
properties we had to add two environment processes: the
first to submit data to be transferred, and the second to
check that the data accepted by the receiver match the data
that were submitted by the sender.



Verification of an SDL Specification — a Case Study 5

The original system description already included un-
predictable message transfer in the physical layer. For
each message a non-deterministic choice was made to for-
ward or ignore the message. It was treated as an existing
environment model that was included in the specification
because of the system verification by the ObjectGEODE
tools [4].

6.3 Simulation

During the random simulation several inconsistencies
about the behavior of the system and some additional lim-
itations of the if2pml tool were discovered. In the go-
back-n protocol, no more than a maximum number of un-
acknowledged frames should be outstanding at any time.
In order to enforce the flow control, layer 2 should be able
to block the sender. The informal specification [4] poses
a requirement on the Initiator to store packets when trans-
mission window is full, but does not elaborate on it in any
detail. The specification blocks the sender with the en-
abling condition construct. When the enabling condition
is not fulfilled, signal should be saved. Unsupported save
construct and enabling condition are known limitations
of the if2pml translator. It should be noted that differ-
ent interpretations of the save construct are possible also
in IF. Implementation of the sdl2if translator handles
that correctly. It would be recommended to warn the val-
idator on the occurrence of the enabling condition. Its cur-
rent transformation greatly influences the behaviour of the
system. Figure 3 demonstrates the transformation from
SDL to IF and Promela.

SDL:

STATE Connected;
INPUT IDATreq(B_ISDU);
PROVIDED V_queue<2;
NEXTSTATE Sending;

IF:

connected
save
idatreq in q_initiator_i0 \

if not (v_queue < 2);
end;

Promela:

connected:
if
:: ((v_queue<2)) == true ->

q_initiator_i0?\
idatreq(sender,b_isdu) ->
v_d.v_isdu = b_isdu ->
goto con25;

fi

Figure 3. Transformation of the enabling condition from SDL
to IF and Promela

It shows that the description in Promela is not prop-
erly formed. The transition is enabled as long as vari-
able v queue is smaller than 2. When signal idatreq
is not in the input queue, execution of the process could
be blocked until its reception. Reception of the acknow-
ledgements is unintentionally blocked. This results in a
deadlock when the input buffer becomes full. Descrip-
tion of the SDL system and environment was altered to
solve this problem. A better solution would be to prop-
erly translate the enabling condition construct, but this is
outside the scope of this paper.

During a simulation of the go-back-n protocol we no-
ticed that after four unsuccessful retransmissions of the
signal, retransmissions are stopped and a disconnection is
requested [4]. The specification follows the requirements.

Next, a wrong specification of the retransmission pro-
cedure was found. Due to the miss-configured index of
the last outstanding packet, incorrect retransmission was
performed. Part of the original MSC generated by the
xdtspin is shown in Figure 4. The first retransmission
is regular. During the second retransmission an unspe-
cified or old value in the first “empty” slot in the sending
window is sent to the receiver.

Figure 4. Double-retransmission procedure

We could not afford to ignore these discoveries, so
SDL code modification was necessary. Modifications in-
cluded elimination of the maximum number of retrans-
missions and retransmission procedure corrections. The
first correction would require change of the functional
specification and is questionable. Our intention was to
verify the functionality of the go-back-n protocol, so we
decided to make the change.

The protocol specification also included transmission
of the acknowledgement frames for the retransmitted
frames. A simulation run of the new model discovered
a case where an acknowledgement was not sent by the
process Responder. Visual inspection of the SDL de-
scription discovered a wrong specification of the acknow-
ledgement transmission. After the correction we did not
find any additional errors with the following simulation
runs.



6 Vlaovič, Vreže, Brezočnik, Kapus

6.4 Safety

The safety property capabilities of Spin check assertions
and invalid end states. The assert statement can be used to
formalize system invariants, i.e., boolean conditions that
are required to be invariantly true in all reachable system
states. We did not define any invariants. Focus of the
safety properties check was on the invalid end-states.

Spin supports exhaustive, supertrace, and hash-
compact search modes. Exhaustive mode represents a full
state space exploration. This mode is always preferable,
but is not always possible, because all unique states must
be stored in memory. Our system ran out of memory dur-
ing the exhaustive verification. Much research has been
directed to reduce the state size by storing states in a com-
pact form [12]. Spin’s supertrace mode involves a con-
trolled partial search. The technique is based on hashing
with collision detection. Spin provides an estimation of
the state coverage with a hash factor. It is a ratio between
the number of the available bits and reached states. For
each system state only one bit of memory is used. When
using this method one should check if the coverage was
adequate. If not, reports of the unreachable code can
be inaccurate and some errors might be missed. Reas-
onably good results can be obtained with the hash factor
of 100 or greater which represents coverage greater than
99%. Hash-compact search mode collapses state vector
sizes down using a version of the Wolper’s hash-compact
method [13]. Additionally, several reduction techniques
and compressions are available.

We will present only the results of the supertrace
search and partial order reduction algorithm. Partial or-
der reduction exploits the independence of concurrently
executed events. Most of the activities in concurrent soft-
ware are performed independently, without a global syn-
chronizing clock.

Some particularities of the XSpin environment were
found. Most notable is a wrong interpretation of the spe-
cified advanced options. A good estimation of the state
space size is crucial for the good coverage of the super-
trace search algorithm. XSpin accepts estimated number
in a decimal representation of the number of states. The
closest power of two is taken by XSpin to use it during
the verification run. This calculation does not check if the
memory limit is exceeded, so additional care is needed.
In some cases estimated number was not correct. It is re-
commended to check the used value in the command line
of the verifier. If the calculation is not correct, direct us-
age of the verifier can solve the problem.

There were no invalid end-states found. Since none of
the states were assigned predicate of the valid end-state,
this confirms that system is dead-lock free. After we mod-
ified the “interminable” model of the environment to in-
clude request for the disconnection, the system termin-
ated and invalid end-states were reported. Proper labeling

of the valid end-states produced a verification run without
any error.

An example of unreachable code report was per-
formed with the “interminable” model of the environ-
ment. For each process, report of an unexecutable code
is provided as a result of the state-space exploration. For
example, in the process Responder four unexecutable
statements were found. Three of them were caused by the
lack of the disconnection request from the environment.
The fourth statement exposed that the process expects re-
ception of the signal ICONreq in the state Connected.
Verification showed that this cannot occur with the spe-
cified model of the environment and that it could be safely
removed from the system description. Importance of a
proper model of the environment is evident.

6.5 Liveness

The input data sequence of our environment consists of
three different data items. We can imagine that each data
item has a different colour. Our model of the environment
send one red and one blue data item inserted randomly in
an infinite sequence of white data items [14, 15].

To monitor the behaviour of the system we supple-
mented the model of the system with probes, which are
global monitor variables. For each data item send and re-
ceive probes were defined (sr = send red, rr = receive red,
etc.). While adding the probes to the model, one should
be very careful and take into account the concurrent ex-
ecution of processes. Therefore, send and receive state-
ments should be indivisible with the assignment of the
probes. During the conversion, if2pml defines process
transitions from one stable state to another as atomic ac-
tions. This transformation is based on the definition of
SDL. Probes have to be added manually by the verifier
each time a new version of the model is extracted. We be-
lieve probe insertion can be done mechanically based on
the LTL formula.

As an example of formal verification of liveness prop-
erties we checked that the red data item cannot disappear
from the data sequence with the following LTL formula:
[](sr -> <> rr). The formula claims that always,
if the red data item is sent by the sender, it is eventually
received at the receiver.

The verification disclosed where the specified
method of acknowledgement reception in the process
Initiator would fail. Inspection of the resulting
counterexample simulation run revealed that the acknow-
ledgement number was not correctly checked. This res-
ulted in unintentional acknowledgements of frames that
were lost. Correction was checked with another verifica-
tion run which did not produce any errors.



Verification of an SDL Specification — a Case Study 7

7 Findings

The case study showed that there are many things that
influence the quality of the verification. Formal verifica-
tion of the SDL system specification with DT Spin con-
sists of many steps. Each of them has its own particu-
larities which the verifier should be aware of. Our inten-
tion was to present our experience and discoveries during
the research activities. We managed to reveal some in-
teresting and erroneous system behaviors which were not
discovered by the original author. Some of them were re-
vealed already during the simulation runs. More subtle er-
rors, like checking of the acknowledgement number, were
found only with the verification of the LTL-expressed
property during the verification of liveness.

8 Further Research

Based on the experience gathered during this case study,
our research group decided to expand research activities
to the domain of mechanical extraction of models from
SDL system specifications. We decided to use formal
verification tool Spin and Promela language for the de-
scription of the models. Since the manual model prepar-
ation process is prone to incorrect modelling of system
properties and requires highly skilled professionals, we
believe that mechanical extraction of models could pro-
mote formal techniques in the industry. In this section we
present challenges, research directions, and first results in
the automatic generation of models from SDL specifica-
tions.

We decided to use Spin due to its support for mod-
elling of external operators written in programming lan-
guage C and wide acceptance from the research com-
munity [16, 17]. Every SDL specification from our in-
dustry projects uses such operators. Their mechanical in-
clusion to the model is our long-term goal.

Each SDL Abstract Data Type (ADT) can contain
one or more operators. The body of the operators can
be implemented with SDL or external functions written
in C language. ObjectGEODE’s SDL C code generator
provides a predefined interface between the SDL specific-
ation and operators that are implemented in C. External
files can include complex functions and define new data
structures and header files.

Mechanical generation of models with support for the
external operators presents a big challenge. Our cur-
rent approach is divided into two phases. First, ex-
haustive analysis of the SDL specification and C code is
performed. This phase involves analysis of data struc-
tures, global variables, function calls, and all external files
which are included through the ADT operator mechan-
ism. Next, we build a model of the specification [18].

The complexity of external operators can be unman-
ageable for the formal verification due to the access to a

data base, complex parsing operations or similar. In our
further research we will try to mechanically reduce the
complexity of external operators with their abstraction in
the generated model of the specification [19].

First results of our research are presented in [20],
where we address the following issues:

1. modelling of the SDL data types,

2. support for the dynamic creation of processes,

3. modelling of the priority signal,

4. modelling of the implicit transition,

5. modelling of the spontaneous transition,

6. modelling of the save construct,

7. modelling of the priority input,

8. modelling of the enabling condition,

9. modelling of the asterisk input,

10. modelling of direct (PId) and indirect addressing
(name of the process, name of the signal route),

11. support for path limitations introduced by the via
statement,

12. dynamic monitoring of the associated channel,

13. modelling of the asterisk state,

14. support for timers with parameters,

15. introduction of probes for monitoring of the system
behaviour during formal verification of the model.

One of the hardest challenges was modelling of com-
munication. Each process has an associated channel. For
proper modelling of the save construct and priority input
dynamic monitoring of the associated channel is required.
Each process keeps track of its input queue. Evaluation
of the signal reception is done by a special skeleton in
the body of the process. Signal reception order is defined
by the input constructs of the current state of the process.
First results, obtained from the automatic generation of a
model from an SDL specification in [21], are promising.
Unfortunately, further discussion of our work exceeds the
scope of this paper.

9 Conclusion

In the first part of this paper we wanted to focus more
on the formal verification, but we decided to present the
whole experience. We did not want to leave out the dis-
coveries obtained during the transformation procedures
and simulation runs which inspired us to focus our re-
search activities in this area. Currently many research



activities are focused on the use of formal methods in an
industrial setting. Section 8 describes part of our efforts
in the last months. We believe there is still room for an
improvement in the algorithms for mechanical extraction
of the model, verification tools, and design methodolo-
gies that would include formal verification as an equally
important part of the development process.

10 References

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
Checking. The MIT Press, third printing ed., 2001.

[2] G. J. Holzmann, “Proving the Value of Formal Methods,”
in 7th Int. Conference on Formal Description Techniques
(FORTE94), (Bern, Switzerland), 1994.

[3] J. Ellsberger, D. Hogrefe, and A. Sarma, SDL Formal
Object-oriented Language for Communicating Systems.
Prentice Hall Europe, 1997.

[4] B. Lesjak, Design of a communication protocol using Ob-
jectGEODE (in Slovene). Faculty of Electrical Engineer-
ing and Computer Science, 2002.

[5] M. Bozga, J. Fernandez, L. Ghirvu, S. Graf, J. Krimm,
L. Mounier, and J. Sifakis, “If: An Intermediate Repres-
entation for SDL and its Applications,” in Proceedings of
SDL-FORUM’99, Montreal, Canada, June 1999.

[6] M. Bozga, L. Ghirvu, S. Graf, L. Mounier, and J. Sifa-
kis, “The Intermediate Representation IF: Syntax and se-
mantics,” tech. rep., Vérimag, Grenoble, 1999.

[7] D. Bošnački, “Extending Promela and Spin with Discrete
Time,” in Proceedings of the VIII Conference on Logic
and Computer Science, 1997.

[8] J. Baeten, “Esprit Project 23498 - VIRES (Veri-
fying Industrial Reactive Systems).” URL:
<http://www.cordis.lu/esprit/src/23498.htm>.

[9] “if2pml.” URL: <http://www.win.tue.nl/ sidorova/Vires/
if2pml.html>.

[10] “Promela Reference — typedef.” URL:
http://spinroot.com/spin/Man/typedef.html.

[11] G. J. Holzmann, The SPIN model checker: Primer and
reference manual. Addison Wesley, 2003.

[12] J. Geldenhuys and P. de Villiers, “Runtime Efficient State
Compaction in SPIN,” in 5th SPIN workshop, July 1999.

[13] P. Wolper and D. Leroy, “Reliable Hashing Without Colli-
sion Detection,” in Computer Aided Verification, Proc. 5th
Int. Workshop, vol. 697 of Lecture Notes in Computer Sci-
ence, (Elounda, Crete), pp. 59–70, Springer-Verlag, June
1993.

[14] G. Holzmann, “The model checker SPIN,” in IEEE Trans-
actions on Software Engineering, vol. 23, pp. 279–295,
May 1997.

[15] P. Wolper, “Expressing Interesting Properties of Programs
in Propositional Temporal Logic,” in Proc. 13th ACM
Symp. on Principles of Programming Languages, (St.
Petersburgh), pp. 184–192, January 1986.

[16] G. J. Holzmann, “From Code to Models,” in Proc. 2nd Int.
Conf. on Applications of Concurrency to System Design,
pp. 3–10, 2001.

[17] G. Holzmann, “Logic Verification of ANSI-C Code with
SPIN,” pp. 131–147, Springer Verlag / LNCS 1885, Sep.
2000.

[18] A. Vreže, Extending automatic modelling of SDL specific-
ations in Promela with embedded C code and a new model
of discrete time. Work in progress, Faculty of Electrical
Engineering and Computer Science, University of Mari-
bor, 2005.

[19] F. Tip, “A survey of program slicing techniques,” Journal
of Programming Languages, vol. 3, pp. 121–189, Sept.
1995.

[20] B. Vlaovič, Automatic generation of SDL models with
probes from the system specification. Ph.D. thesis, Faculty
of Electrical Engineering and Computer Science, Univer-
sity of Maribor, 2004.

[21] L. Doldi, Validation of Communications Systems with
SDL: The Art of Simulation and Reachability Analysis.
John Wiley & Sons, Ltd, 2003.

Boštjan Vlaovič (Member, IEEE, ACM) received his dip-
loma and Ph.D. degrees from the Faculty of Electrical En-
gineering and Computer Science, University of Maribor,
Slovenia, in 1999 and 2004, respectively. He is a teach-
ing assistant at the same faculty. His main research areas
are in the field of formal verification. His special interests
cover formal protocol verification with model checking,
especially mechanical extraction of models from the SDL
specification.

Aleksander Vreže (Student Member, IEEE) received
diploma degree in Computer Science from the Faculty of
Electrical Engineering and Computer Science, University
of Maribor, Slovenia, in 2001. He is a Ph.D. candidate
at the same faculty and works as a researcher in the field
of formal verification. His special interests cover formal
protocol verification.

Zmago Brezočnik (Member, IEEE, ACM) received his
M.Sc. and Ph.D. degrees from the University of Maribor,
Faculty of Electrical Engineering and Computer Science,
in 1986 and 1992, respectively. He is professor, head
of Laboratory for Microcomputer Systems, and Deputy
Dean of Education at the same faculty. His main research
areas are formal hardware and protocol verification, es-
pecially symbolic model checking, and binary decision
diagrams.

Tatjana Kapus (Member, IEEE, ACM) received the
M.Sc. and Ph.D. degrees from the Faculty of Electrical
Engineering and Computer Science, University of Mari-
bor, Slovenia, in 1991 and 1994, respectively. She is now
an associate professor there. Her research interests are in
the area of temporal logic, process-algebraic, and other
formalisms and tools for specification and verification of
reactive systems, such as, for example, communication
protocols.


